大数据下有大机遇
自媒体时代,人们的所有行为似乎都暴露在阳光下。小到一日三餐吃了什么,买了件什么品牌的新衣服,大到买房买车、投资移民等等,几乎所有的行为都可以用数据来表达,而所有的数据都在网络中有迹可循。28%的全球企业已经开始进行大数据实践。而在中国,四分之一的企业也正在积极投入大数据业务,中国成为极具代表性的大数据实践市场。
大数据吸引了越来越多的关注。但是,关于什么是“大数据”,现在还没有标准的定义。维基百科上有人对大数据作了如下描述:数据增长如此之快,以至于难以使用现有的数据库管理工具来驾驭,困难存在于数据的获取,存储,搜索,共享,分析和可视化等方面。IBM用大量化(Volume)、多样化(Variety)和快速化(Velocity)简明扼要概括出“大数据”的显着特征。麦肯锡则定义“大数据”是指无法在一定时间内用传统数据库软件工具对其内容进行抓取、管理和处理的数据集合。
通俗地说,大数据或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理,并整理成为帮助企业经营决策的资讯。也就是说,“大数据”就是一个体量特别大,数据类别特别大的数据集。“大数据”本身并不是一种新的技术,也不是一种新的产品,而是我们这个时代出现的一种现象。
有权威机构预计,全球数据总量每两年就会增长一倍,到2020年人类拥有的数据总量将会达到惊人的35万亿GB。在“大数据”中,存储在数据库中的结构化数据仅占10%,邮件、视频、微博、帖子、页面点击等大量非结构化数据占据了另外90%。视频、音频、图像、数字的等多种交互方式的丰富,让我们已经进入了数据信息爆炸的阶段。有调研机构认为:未来10年之内,全球的数据和内容将增加44倍。
毫无疑问,大数据时代来了。
大数据带来大机遇
2012年,YouTube实现了40亿美元的收入,其根源就在于对大数据的挖掘和应用。去年3月,美国政府宣布投资2亿美元启动“大数据研究和发展计划”,把大数据从商业层面上升到国家战略层面。据预测,大数据业务每年将为美国医保带来3000亿美元的价值。而在中国,大数据的潜在市场规模达2万亿元。
数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。可以说,大数据为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力,是企业未来竞争优势的基础,它将改变企业决策、价值创造和价值实现的方式。那么,大数据到底能给企业带来什么价值呢?未来数据到底有多重要?在大量数据的背后,如何找出有用数据,如何发现规律,如何找到新的商业机会?
大数据绝不是枯燥的数字,更不是简单的信息,互联网上每天产生的庞大数据在一定意义上就意味着财富,意味着商业价值。
毫不夸张地说,大数据是一场变革。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。难怪有人声称,数据将是下一个大的自然资源,将会区分每个行业的胜者与输家。
大数据意味着大机遇。它不仅影响了人们的生活、工作,更重要的是影响了人们思考问题的方式。但,机遇必然伴随挑战,关键在于如何应对。从十亿到百亿到千亿企业,或许是大多数中国服装企业的梦想。然而,不是市场有多大,就能做多大的生意,必须要有现代化、系统化的管理作为支撑,通过数据化应用,保持线上线下的一种平衡,才能在未来立于不败之地。未来企业之间的竞争将不会再单纯是产品、服务、渠道、营销等的竞争,而是对信息掌握能力的竞争。大数据的广泛推进,降低大数据分析成本,简化部署难度,提高分析速度将成为越来越多的企业首要关注的方向。谁能够掌握消费者的心理、把握市场的发展趋势,并且进行最快速的反应,谁就将赢得未来。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20