热线电话:13121318867

登录
首页CDA发布掌握高级计量经济学的核心方法及Stata操作_陈强老师主讲
掌握高级计量经济学的核心方法及Stata操作_陈强老师主讲
2022-04-03
收藏

Stata以其简单易懂和功能强大受到初学者和高级用户的普遍欢迎。使用时可以每次只输入一个命令,也可以通过一个Stata程序一次输入多个命令。这样的话即使发生错误,也较容易找出并加以修改。

Stata有很多功能较强且简单的数据管理命令,能够让复杂的操作变得容易。

Stata也能够进行大多数统计分析(回归分析,logistic回归,生存分析,方差分析,因子分析,以及一些多变量分析)。Stata的优势可能在于回归分析,logistic回归。

Stata较好地实现了使用简便和功能强大两者的结合。


推荐书目:《计量经济学及Stata应用》、《高级计量经济学及Stata应用》,作者:陈强

推荐理由:陈强老师的计量经济学教材,在设计上单独章节工具变量、二值选择模型等,解决其他教材没有详细讲解这部分的疑问。而且陈老师教材行文,以生活实际来讲计量,容易理解。《高级计量经济学及Stata应用》还加入多值选择模型、非参数估计、贝叶斯估计等内容。



高级计量经济学及Stata
陈强老师2021年5天现场班


2021年Stata高级计量新课纲,讲授高级计量经济学与Stata的秘笈。

时间2021年5月1-6日(六天)
地点:北京市海淀区(缴费后发送交通住宿指南)
安排:上午9:00-12:00;下午2:00-5:00;答疑5:00-5:30
费用:6200元 /5400元 (学生价,仅限全日制在读本科和硕士在读);食宿自理

我要报名


讲师介绍:          

陈强,分别于1992年与1995年获得北京大学经济学学士与硕士学位,2007年获美国Northern IllinoisUniversity数学硕士与经济学博士学位,现任山东大学经济学院教授,博士生导师,泰岳经济研究中心副主任(主持工作)。主要研究领域为计量经济学、经济史。

已独立发表论文于Oxford Economic Papers (lead article),Economica,Journalof Comparative Economics,《经济学(季刊)》、《世界经济》等国内外期刊。

著有畅销教材《高级计量经济学及Stata应用》(第2版,高教社,2014)与《计量经济学及Stata应用》(高教社,2015)。2010年入选教育部新世纪优秀人才支持计划。


培训目的:

掌握高级计量经济学的核心方法及Stata操作,不再茫然,知其然而知其所以然,迅速成为处理数据及定量分析的高手。


课程特色:

直观地解释高级计量经济学方法,通过案例学习相应的Stata操作,深入浅出地介绍实证分析与论文写作的精髓。


课程配套资料:

课程PPT、数据集及相关论文。


课程简介:

      本次高级计量经济学及Stata现场班,将根据多次现场班的反馈进一步完善。在课程内容的设计上,主要指导思想是在较快时间内,将高级计量及Stata的精髓及核心内容,以通俗生动的语言以及大量的案例交给学员,并注重在各领域的常见应用,诸如面板数据、时间序列、工具变量法以及微观计量,乃至论文写作的各个环节技巧由于学员的基础不同,本课程仅对学员背景做较低要求,即假设学员知道概率统计及少量线性代数,但不要求学过计量经济学或Stata操作因为“大道至简至易”,初级计量与高级计量的本质是一样的,学子们需要的是能够直指人心地洞明计量原理与操作工具,然后得心应手地用于实战(而非完成习作)。


课程大纲:

第一讲,OLS及其标准误。

着重介绍小样本与大样本OLS,以及相应的普通标准误、异方差稳健标准误、异方差自相关稳健标准误、聚类稳健标准误、自助标准误(bootstrap standard errors)。深切理解OLS的原理与适用条件,是一切计量原理的基础。OLS拓展主题:虚拟变量、交互项、核心变量与控制变量的区别(控制变量的内生性)。

案例:改革开放的结构变动;红薯与旱灾的交互项;校外学习机会的代理变量。


第二讲,Stata快速入门。

及时地介绍Stata知识,以OLS在Stata的实现作为入门,体会Stata的简单与强大。

案例:美国电力企业的规模效应;冰淇淋的需求。


第三讲,工具变量法。

由于双向因果、遗漏变量、度量误差的普遍存在,内生性是实证研究的常见难题,而工具变量法是解决内生性的利器,包括2SLS、GMM、近乎外生的IV,控制函数法(Control Function)等。

案例:殖民者死亡率与制度;出生季度与教育年限;经济增长与非洲内战;国企改革的作用;警察与犯罪率;看电视与小儿自闭症;美国年轻男子的教育回报。


第四讲,二值选择模型。

被解释变量为虚拟变量的二值选择模型有着广泛的应用。包括Probit,Logit,MLE,QMLE,ivprobit,二元Probit,以及二值选择模型中的交互效应等。

案例美国妇女的就业。


第五讲,静态面板。

面板数据由于能控制个体异质性(heterogeneity),缓解遗漏变量偏差,在实践中越来越重要。静态面板是最常见的面板,包括个体固定效应、随机效应、时间固定效应、双向固定效应、个体时间趋势、面板工具变量法(Panel IV)、交互固定效应(interactive fixed effects)等。

案例美国交通死亡率,nlswork数据。

   

第六讲,动态面板。

经济现象常具有某种惯性或部分调整,即被解释变量的滞后值出现在方程右边。动态面板也因为可自带工具变量而应用广泛。包括差分GMM、水平GMM与系统GMM等。

案例:美国工人的工资决定。

       

第七讲,非参数与半参数估计(Nonparametric and Semiparametric Estimations)。

非参与半参方法由于其稳健性而日益进入标准的计量工具箱,包括核密度估计、核回归、K近邻回归、局部线性回归、局部多项式回归、LOWESS回归、半参数回归等。

案例:交互效应的设定误差;摩托车撞击实验;美国电力企业的规模效应。

   

第八讲,随机实验与自然实验。

实验方法因其可信度而日益兴起,成为实证研究的“黄金标准”,包括随机实验、第一类与第二类自然实验。

案例:劳动力市场的三个经典田野实验;最低工资立法与劳动力需求;越战老兵的长期收入。

       

第九讲,双重差分法(Difference-in-Differences,简记DID)。

双重差分法利用面板数据的优势,可克服部分内生性,是研究政策或项目处理效应(treatment effects)的常用工具。内容包括双重差分法、多期异时DID、平行趋势检验、广义DID、三重差分法等。

案例:伦敦霍乱的自然实验;大萧条货币政策与银行数量;最低工资立法与劳动力需求;银行管制放松与收入分配(Big Bad Banks);茶叶价格与性别比例;废除科举与革命起义;人工智能与国际贸易。

       

第十讲,匹配估计量(Matching Estimators)。

匹配估计量是反事实因果推断的重要方法,包括倾向得分匹配(Propensity Score Matching)、粗糙化精确匹配(CoarsenExact Matching)、偏差校正的马氏匹配(Bias-corrected Mahalanobis Matching),以及双重差分倾向得分匹配(PSM-DID)。同时介绍处理效应的其他估计方法,包括回归调整法(Regression Adjustment),逆概率加权法(Inverse Probability Weighting),双重稳健估计(DoublyRobust Estimator)。

案例:就业培训的处理效应;最低工资立法与劳动力需求。

       

第十一讲,断点回归(Regression Discontinuity Design)与拐点回归(Regression Kink Design)。

由于在断点附近存在局部随机分组,故断点回归的效力接近于随机实验,日益为研究者所青睐。内容包括精确断点回归、模糊断点回归、密度(操纵)检验、稳健性检验、拐点回归等。

案例:淮河以北冬季燃煤取暖与人均寿命;扶贫政策的效应;买房落户与户口价值;美国参议院选举的在位者优势;奖学金与大学入学;失业保险与失业期限。

       

第十二讲,合成控制法(Synthetic Control Method)。

在评价某处理地区的政策效应时,将控制地区进行最优的线性组合,以构造合成控制地区进行对比,这是估计处理效应的新兴强大方法。包括合成控制法的原理、算法与安慰剂检验等。

案例:西班牙巴斯克地区恐怖活动的经济后果;加州控烟法的成效;德国统一的效应。

       

第十三讲,回归控制法(Regression Control Method)。

与合成控制法类似,但回归控制法使用回归法来构成反事实的控制地区(Hsiao et al., 2012),比合成控制法更为简便易行。

案例:中国香港回归以及与中国内地经济整合的效应;四万亿经济刺激的效应;上海与重庆房产税试点的效应。

       

第十四讲,异质性处理效应(Heterogeneous treatment effects)。

包含异质性工具变量法的局部平均处理效应(Local Average Treatment Effect,简记LATE),以及双向固定效应模型的异质性处理效应(de Chaisemartin and D'Haultfoeuille, 2020)、模糊双重差分法(fuzzy DID)等。

案例:就业培训项目的不完全遵守(imperfect compliance);越战老兵的长期收入;报纸数量与大选投票率。

       

第十五讲,分位数回归(Quantile Regression)。

线性回归只是研究在给定X条件下, Y的条件期望E(Y|X);而分位数回归则研究在给定X条件下,Y的整个条件分布Y|X,从而揭示更多重要信息。内容包括分位数回归、分位数处理效应、分位数工具变量法、面板分位数回归等。

案例恩格尔的食品开支数据;美国年轻男子的教育回报;距大学远近与教育回报;美国交通死亡率。


!赠送陈强老师《计量经济学及Stata应用》视频(时长46小时)


 

报名流程:

1. 点击“我要报名”网上提交报名信息;

2. 电话确认,订单缴费;

3. 缴费确认,开课前一周发送软件准备,电子版讲义;
4. 现场领取发票及邀请函。


优惠:

现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;

同一单位六人以上同时报名8折优惠;

以上优惠与学生价优惠均不叠加。


联系方式:

尹老师

电话:010-53352991

QQ:  42884447

邮箱: yinna@pinggu.org

微信:yinyinan888


根据缴费顺序安排座位哦!

数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询