Stata以其简单易懂和功能强大受到初学者和高级用户的普遍欢迎。使用时可以每次只输入一个命令,也可以通过一个Stata程序一次输入多个命令。这样的话即使发生错误,也较容易找出并加以修改。
Stata有很多功能较强且简单的数据管理命令,能够让复杂的操作变得容易。
Stata也能够进行大多数统计分析(回归分析,logistic回归,生存分析,方差分析,因子分析,以及一些多变量分析)。Stata的优势可能在于回归分析,logistic回归。
Stata较好地实现了使用简便和功能强大两者的结合。
推荐书目:《计量经济学及Stata应用》、《高级计量经济学及Stata应用》,作者:陈强
推荐理由:陈强老师的计量经济学教材,在设计上单独章节工具变量、二值选择模型等,解决其他教材没有详细讲解这部分的疑问。而且陈老师教材行文,以生活实际来讲计量,容易理解。《高级计量经济学及Stata应用》还加入多值选择模型、非参数估计、贝叶斯估计等内容。
2021年Stata高级计量新课纲,讲授高级计量经济学与Stata的秘笈。
时间:2021年5月1-6日(六天)
地点:北京市海淀区(缴费后发送交通住宿指南)
安排:上午9:00-12:00;下午2:00-5:00;答疑5:00-5:30
费用:6200元 /5400元 (学生价,仅限全日制在读本科和硕士在读);食宿自理
我要报名
讲师介绍:
陈强,分别于1992年与1995年获得北京大学经济学学士与硕士学位,2007年获美国Northern IllinoisUniversity数学硕士与经济学博士学位,现任山东大学经济学院教授,博士生导师,泰岳经济研究中心副主任(主持工作)。主要研究领域为计量经济学、经济史。
已独立发表论文于Oxford Economic Papers (lead article),Economica,Journalof Comparative Economics,《经济学(季刊)》、《世界经济》等国内外期刊。
著有畅销教材《高级计量经济学及Stata应用》(第2版,高教社,2014)与《计量经济学及Stata应用》(高教社,2015)。2010年入选教育部新世纪优秀人才支持计划。
培训目的:
掌握高级计量经济学的核心方法及Stata操作,不再茫然,知其然而知其所以然,迅速成为处理数据及定量分析的高手。
课程特色:
直观地解释高级计量经济学方法,通过案例学习相应的Stata操作,深入浅出地介绍实证分析与论文写作的精髓。
课程配套资料:
课程PPT、数据集及相关论文。
课程简介:
本次高级计量经济学及Stata现场班,将根据多次现场班的反馈进一步完善。在课程内容的设计上,主要指导思想是在较快时间内,将高级计量及Stata的精髓及核心内容,以通俗生动的语言以及大量的案例交给学员,并注重在各领域的常见应用,诸如面板数据、时间序列、工具变量法以及微观计量,乃至论文写作的各个环节技巧。由于学员的基础不同,本课程仅对学员背景做较低要求,即假设学员知道概率统计及少量线性代数,但不要求学过计量经济学或Stata操作。因为“大道至简至易”,初级计量与高级计量的本质是一样的,学子们需要的是能够直指人心地洞明计量原理与操作工具,然后得心应手地用于实战(而非完成习作)。
课程大纲:
第一讲,OLS及其标准误。
着重介绍小样本与大样本OLS,以及相应的普通标准误、异方差稳健标准误、异方差自相关稳健标准误、聚类稳健标准误、自助标准误(bootstrap standard errors)。深切理解OLS的原理与适用条件,是一切计量原理的基础。OLS拓展主题:虚拟变量、交互项、核心变量与控制变量的区别(控制变量的内生性)。
案例:改革开放的结构变动;红薯与旱灾的交互项;校外学习机会的代理变量。
第二讲,Stata快速入门。
及时地介绍Stata知识,以OLS在Stata的实现作为入门,体会Stata的简单与强大。
案例:美国电力企业的规模效应;冰淇淋的需求。
第三讲,工具变量法。
由于双向因果、遗漏变量、度量误差的普遍存在,内生性是实证研究的常见难题,而工具变量法是解决内生性的利器,包括2SLS、GMM、近乎外生的IV,控制函数法(Control Function)等。
案例:殖民者死亡率与制度;出生季度与教育年限;经济增长与非洲内战;国企改革的作用;警察与犯罪率;看电视与小儿自闭症;美国年轻男子的教育回报。
第四讲,二值选择模型。
被解释变量为虚拟变量的二值选择模型有着广泛的应用。包括Probit,Logit,MLE,QMLE,ivprobit,二元Probit,以及二值选择模型中的交互效应等。
案例:美国妇女的就业。
第五讲,静态面板。
面板数据由于能控制个体异质性(heterogeneity),缓解遗漏变量偏差,在实践中越来越重要。静态面板是最常见的面板,包括个体固定效应、随机效应、时间固定效应、双向固定效应、个体时间趋势、面板工具变量法(Panel IV)、交互固定效应(interactive fixed effects)等。
案例:美国交通死亡率,nlswork数据。
第六讲,动态面板。
经济现象常具有某种惯性或部分调整,即被解释变量的滞后值出现在方程右边。动态面板也因为可自带工具变量而应用广泛。包括差分GMM、水平GMM与系统GMM等。
案例:美国工人的工资决定。
第七讲,非参数与半参数估计(Nonparametric and Semiparametric Estimations)。
非参与半参方法由于其稳健性而日益进入标准的计量工具箱,包括核密度估计、核回归、K近邻回归、局部线性回归、局部多项式回归、LOWESS回归、半参数回归等。
案例:交互效应的设定误差;摩托车撞击实验;美国电力企业的规模效应。
第八讲,随机实验与自然实验。
实验方法因其可信度而日益兴起,成为实证研究的“黄金标准”,包括随机实验、第一类与第二类自然实验。
案例:劳动力市场的三个经典田野实验;最低工资立法与劳动力需求;越战老兵的长期收入。
第九讲,双重差分法(Difference-in-Differences,简记DID)。
双重差分法利用面板数据的优势,可克服部分内生性,是研究政策或项目处理效应(treatment effects)的常用工具。内容包括双重差分法、多期异时DID、平行趋势检验、广义DID、三重差分法等。
案例:伦敦霍乱的自然实验;大萧条货币政策与银行数量;最低工资立法与劳动力需求;银行管制放松与收入分配(Big Bad Banks);茶叶价格与性别比例;废除科举与革命起义;人工智能与国际贸易。
第十讲,匹配估计量(Matching Estimators)。
匹配估计量是反事实因果推断的重要方法,包括倾向得分匹配(Propensity Score Matching)、粗糙化精确匹配(CoarsenExact Matching)、偏差校正的马氏匹配(Bias-corrected Mahalanobis Matching),以及双重差分倾向得分匹配(PSM-DID)。同时介绍处理效应的其他估计方法,包括回归调整法(Regression Adjustment),逆概率加权法(Inverse Probability Weighting),双重稳健估计(DoublyRobust Estimator)。
案例:就业培训的处理效应;最低工资立法与劳动力需求。
第十一讲,断点回归(Regression Discontinuity Design)与拐点回归(Regression Kink Design)。
由于在断点附近存在局部随机分组,故断点回归的效力接近于随机实验,日益为研究者所青睐。内容包括精确断点回归、模糊断点回归、密度(操纵)检验、稳健性检验、拐点回归等。
案例:淮河以北冬季燃煤取暖与人均寿命;扶贫政策的效应;买房落户与户口价值;美国参议院选举的在位者优势;奖学金与大学入学;失业保险与失业期限。
第十二讲,合成控制法(Synthetic Control Method)。
在评价某处理地区的政策效应时,将控制地区进行最优的线性组合,以构造合成控制地区进行对比,这是估计处理效应的新兴强大方法。包括合成控制法的原理、算法与安慰剂检验等。
案例:西班牙巴斯克地区恐怖活动的经济后果;加州控烟法的成效;德国统一的效应。
第十三讲,回归控制法(Regression Control Method)。
与合成控制法类似,但回归控制法使用回归法来构成反事实的控制地区(Hsiao et al., 2012),比合成控制法更为简便易行。
案例:中国香港回归以及与中国内地经济整合的效应;四万亿经济刺激的效应;上海与重庆房产税试点的效应。
第十四讲,异质性处理效应(Heterogeneous treatment effects)。
包含异质性工具变量法的局部平均处理效应(Local Average Treatment Effect,简记LATE),以及双向固定效应模型的异质性处理效应(de Chaisemartin and D'Haultfoeuille, 2020)、模糊双重差分法(fuzzy DID)等。
案例:就业培训项目的不完全遵守(imperfect compliance);越战老兵的长期收入;报纸数量与大选投票率。
第十五讲,分位数回归(Quantile Regression)。
线性回归只是研究在给定X条件下, Y的条件期望E(Y|X);而分位数回归则研究在给定X条件下,Y的整个条件分布Y|X,从而揭示更多重要信息。内容包括分位数回归、分位数处理效应、分位数工具变量法、面板分位数回归等。
案例:恩格尔的食品开支数据;美国年轻男子的教育回报;距大学远近与教育回报;美国交通死亡率。
!赠送陈强老师《计量经济学及Stata应用》视频(时长46小时)
报名流程:
1. 点击“我要报名”网上提交报名信息;
2. 电话确认,订单缴费;
3. 缴费确认,开课前一周发送软件准备,电子版讲义;
4. 现场领取发票及邀请函。
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
同一单位六人以上同时报名8折优惠;
以上优惠与学生价优惠均不叠加。
联系方式:
尹老师
电话:010-53352991
QQ: 42884447
邮箱: yinna@pinggu.org
微信:yinyinan888
根据缴费顺序安排座位哦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31