进行大数据管理的四类公司
在大数据时代,大数据使不同规模公司变得如此迫切的原因在于公司间有效管理数据的程度导致了竞争差距。据经济学人智能单元(Economist Intelligence Unit)调查表明,就大数据管理,公司可以划分为四类,它们是:战略数据管理者,渴望数据管理者;数据收集者和数据闲弃者。经济学人智能单元根据回馈信息总结了各类公司的个性特点。
一、 战略数据管理者
战略数据管理者在各类公司中以其最为成熟的能力位居大数据管理者的最先进的小组。这些公司大都属于制造业企业、金融服务或技术公司。战略数据管理者首先明确了与公司战略目标一致的专项计量和数据项目。其他特点包括:
1. 它们选取最为适当的数据制定决策,它们收集数据的利用率高;
2. 公司高管人士负责数据运作;
3. 它们对数据管理实施全面重点投资,确保数据的准确、全面和可靠;
4. 它们挖掘新兴数据的潜在价值。
二、 渴望数据管理者
这类公司所占数量最大。它们完全认可大数据对公司未来的重要性。它们允许大数据用于战略决策,对其投资甚为积极。但它们依然落后于先行者。这类公司大都分布在通讯和零售业。其他特点包括:
1. 它们的CEO 不大负责数据战略;
2. 它们现在偏重于从数据中学习更多关于内部业务操作的内容,但希望把更多数据面向顾客应用;
3. 不同于战略数据管理者,它们依然纠缠于全面清理和调适数据;
4. 它们中66%的公司仅将有效数据的二分之一进行了恰当应用;
5. 它们很喜欢抱怨太多数据,但资源不足。
三、 数据收集者
这些公司认识到了数据的重要性,但除了储存数据,它们缺乏资源对数据有所作为。它们被数据湮没。这些公司分布于医疗护理和专业服务行业。其他特点包括:
1. 它们极有可能由一名IT 管理者负责数据战略;
2. 它们受损于IT 部门与业务部门之间差强人意的联合。它们中近1/4 认为IT 部门不理解数据的重要性,另外有1/4 认为业务部门不清楚数据的重要性;
3. 它们疲于大多数数据的质量、准确性和一致性;
4. 它们数据管理的努力大多源于满足规定的要求;
5. 除了技能投资,它们对数据管理的几乎所有方面投资都不足;
6. 对于数据的恰当治理它们没有任何正规流程。
四、 数据闲弃者
坦率地讲,30%的数据闲弃者不注重数据收集。另外70%收集数据,依然严重地应用不足。这些公司经营惨淡,遍布各行各业。它们受害于业务部门和IT 部门之间的不良配合,它们大都安排一名中层经理负责数据战略。其他特点包括:
1. 它们更关心改善内部操作,特别关注内部报告;
2. 它们劳神于几乎数据管理的方方面面(除了数据安全);
3. 在数据管理投资上落后于其他公司;
4. 它们至今奋力于维持充足的数据管理技能。
上述分类刻画了围绕数据管理的竞争态势。随着大数据的演进,各组的特点可能会发生变化。但就当前而言,上述分类有助于公司对号入座,更好地理解发展的机遇和面临的挑战。大数据应用的趋势不可逆转。大数据将永久作为公司决策的工具,其作用会变得越来越重要。任何公司若不围绕大数据发展竞争优势就会落伍。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21