如何锻炼出强悍的分析能力
这个问题问的是如何锻炼出强悍的分析能力——那我确实蛮适合回答的。 先放结论:培养强悍的分析能力这个事儿,我的建议是: 1.学一门学科:信息分析; 2.入门几个关键学科,多了解几种分析范式; 3.掌握信息分析的基本工具与方法; 1.学一门学科:信息分析 有很多人谈到的提高分析能力的方法,大都玄乎其玄,说的跟成功学一样——为什么不好好坐下来,专门学一门讲求分析的非常正规的学科呢? 是的,这门正规的、专讲分析的学科就叫做:信息分析。(李彦宏学的“信息管理”这个专业,其核心课程,也就是信息分析) 这门学科主要讲什么? 如其名,主要讲的就是对信息进行分析,当然,你也可能在别的地方听过它的其它的高大上的名字,包括:经济分析、经济预测、市场分析;情报分析、情报调研、情报研究;社会调查、舆情分析、未来研究等。 支撑这门学科的思想,也横贯了逻辑、统计、博弈论、心理学、经济学、管理学、控制论等重要学科。这门学科当然也不是讲玄乎的理论的,而是非常注重方法、术、手段、推理的。
为什么必须要学这门学科? 因为: (1).所有的分析过程,总的来说,都是对信息的处理、分析,而这门学科,便是主讲信息分析的; (2).正规、学术化,有着顶尖专家的研究,集结了前人的智慧,不会像一些成功学一样吹牛逼; (3).讲求方法、术,稳准狠,但是又注重体系化,学了不会走火入魔,而是了解到人的局限、世界的复杂,不会跟个中二青年一样,天天觉得自己掌握了趋势。 学了之后还可以分析能力还可以进阶吗? 当然可以,进阶有两个两个方面:一个是结合别的学科,比如经济学、管理学,国际政治学等,提高自己在特定领域的分析能力;一个是培养自己对纯信息分析的分析能力,比如数据挖掘与分析的能力。 2.入门几个关键学科,多了解几种分析范式 一方面:每一门学科都有着自己的研究经验、研究范式,仔细学习,能收获好多关于如何分析的思想和方法;另一方面,每一门学科内有自己的定义架构,了解这个定义架构,有助于理解定义架构下的世界,从而提高自己的分析能力。 (1).“定义架构” 定义架构指的是,每一门学科里面,都有一些既成的组织化的定义,确定了什么现象是什么,区分了事物的边界和联系,好比是一副有色眼镜,戴上它,世界会清晰好多。 比如你要去做经济分析,你肯定要了解经济学,不要重复去造轮子,自己再去定义什么现象叫什么,这样得不偿失,而且,往往还会导致:你以为你发现了真理,其实你只是换了个说法说明了一些早已被证明是错误的东西罢了。 (如果用编程的说法来说的话,这些定义架构就好比是前人已经写好的库和模块,已经很好用了,就不要重复去造轮子。(当然,你也可以重造,但是,你认为你是想成为开天辟地的大师还是一个分析者?)) (2).要入门哪些学科? 要入门学科包括:心理学(大多数分析,其核心都是在分析人);经济学(描述了这个世界的运行);社会学(有一套自有的话语范式与研究成果)。
具体更完整的我推荐看一下我的答案:对于世界的抽象认识与复杂性研究,你有哪些心得和书籍推荐? 3.掌握信息分析的基本工具与方法 基础打牢了,方法学会了,只会出去跟出租车司机吹会儿牛逼能行吗?我们要做出成果,并且在做出成果的过程中,磨练自己的思想、体会分析的方法,乃至作出创新。 (1).初阶版:脑图工具+文本工具 这些脑图、结构图的工具,各个平台上都有很多,我一般喜欢在ipad与PC平台上面使用: ipad:Mindly,Mindo,iThoughts; PC:Edraw Max,MindManager; 这些脑图、流程图的工具很多,你可以自己选择自己喜欢的。 文本工具就是说,要培养自己的写写画画的能力,让自己具有结构分析的思维和能力。
在这里推荐一本《金字塔原理》 (2).进阶版:Office 进阶版就是excel+ppt+word这些东西,因为一个人的分析,不仅仅是在脑子里面分析了就完了,还要呈现出来,得到反馈。 (3).高阶版:python+各种模块+数据分析与挖掘软件 学会python,结合它的强悍的数据分析能力与各种模块、库、工具(比如ipython,scipy,numpy模块,PyGt等),然后最好系统地学一下统计学,以及SPSS软件,Orange Canvas等,把自己从一个信息分析的票友变成专业的分析人员吧! 其中,关于python的一个答案:大学里 C++ 课程听不懂,但是想当程序员,还有希望么? 写完了,
总结与延伸一下: (1).如果说只是培养较好的分析能力,那么你看几本信息分析方面的书就好了,(比如:信息分析 (豆瓣),信息分析与预测 (豆瓣),信息分析与决策 (豆瓣),建议到图书馆里面去找,专业的信息分析书籍有很多)这里面讲了很多直接可以用但又发人深省的方法,好好学习一下,分析能力肯定是可以提升的; (2).如果说是要培养强悍的分析能力,那么请入专业分析的大坑。 (3).较好的分析能力与强悍的分析能力的差别:较好的分析就是在脑子里面分析有限的事实与数据,对于大量的数据、超出人类直觉的东西,往往束手无策(这世界上大部分事件,都是超出人脑的处理能力的);强悍的分析能力则更要求专业化,借助更多专业工具,更讲求稳准狠。 目前,我也走在成为分析高手的路上,与诸位共勉!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11