
python数据结构之链表详解
数据结构是计算机科学必须掌握的一门学问,之前很多的教材都是用C语言实现链表,因为c有指针,可以很方便的控制内存,很方便就实现链表,其他的语言,则没那么方便,有很多都是用模拟链表,不过这次,我不是用模拟链表来实现,因为python是动态语言,可以直接把对象赋值给新的变量。
好了,在说我用python实现前,先简单说说链表吧。在我们存储一大波数据时,我们很多时候是使用数组,但是当我们执行插入操作的时候就是非常麻烦,看下面的例子,有一堆数据1,2,3,5,6,7我们要在3和5之间插入4,如果用数组,我们会怎么做?当然是将5之后的数据往后退一位,然后再插入4,这样非常麻烦,但是如果用链表,我就直接在3和5之间插入4就行,听着就很方便。
那么链表的结构是怎么样的呢?顾名思义,链表当然像锁链一样,由一节节节点连在一起,组成一条数据链。
链表的节点的结构如下:
data为自定义的数据,next为下一个节点的地址。
链表的结构为,head保存首位节点的地址:
接下来我们来用python实现链表
python实现链表
首先,定义节点类Node:
class Node:
'''
data: 节点保存的数据
_next: 保存下一个节点对象
'''
def __init__(self, data, pnext=None):
self.data = data
self._next = pnext
def __repr__(self):
'''
用来定义Node的字符输出,
print为输出data
'''
return str(self.data)
然后,定义链表类:
链表要包括:
属性:
链表头:head
链表长度:length
方法:
判断是否为空: isEmpty()
def isEmpty(self):
return (self.length == 0
增加一个节点(在链表尾添加): append()
def append(self, dataOrNode):
item = None
if isinstance(dataOrNode, Node):
item = dataOrNode
else:
item = Node(dataOrNode)
if not self.head:
self.head = item
self.length += 1
else:
node = self.head
while node._next:
node = node._next
node._next = item
self.length += 1
删除一个节点: delete()
#删除一个节点之后记得要把链表长度减一
def delete(self, index):
if self.isEmpty():
print "this chain table is empty."
return
if index < 0 or index >= self.length:
print 'error: out of index'
return
#要注意删除第一个节点的情况
#如果有空的头节点就不用这样
#但是我不喜欢弄头节点
if index == 0:
self.head = self.head._next
self.length -= 1
return
#prev为保存前导节点
#node为保存当前节点
#当j与index相等时就
#相当于找到要删除的节点
j = 0
node = self.head
prev = self.head
while node._next and j < index:
prev = node
node = node._next
j += 1
if j == index:
prev._next = node._next
self.length -= 1
修改一个节点: update()
def update(self, index, data):
if self.isEmpty() or index < 0 or index >= self.length:
print 'error: out of index'
return
j = 0
node = self.head
while node._next and j < index:
node = node._next
j += 1
if j == index:
node.data = data
查找一个节点: getItem()
def getItem(self, index):
if self.isEmpty() or index < 0 or index >= self.length:
print "error: out of index"
return
j = 0
node = self.head
while node._next and j < index:
node = node._next
j += 1
return node.data
查找一个节点的索引: getIndex()
def getIndex(self, data):
j = 0
if self.isEmpty():
print "this chain table is empty"
return
node = self.head
while node:
if node.data == data:
return j
node = node._next
j += 1
if j == self.length:
print "%s not found" % str(data)
return
插入一个节点: insert()
def insert(self, index, dataOrNode):
if self.isEmpty():
print "this chain tabale is empty"
return
if index < 0 or index >= self.length:
print "error: out of index"
return
item = None
if isinstance(dataOrNode, Node):
item = dataOrNode
else:
item = Node(dataOrNode)
if index == 0:
item._next = self.head
self.head = item
self.length += 1
return
j = 0
node = self.head
prev = self.head
while node._next and j < index:
prev = node
node = node._next
j += 1
if j == index:
item._next = node
prev._next = item
self.length += 1
清空链表: clear()
def clear(self):
self.head = None
self.length = 0
以上就是链表类的要实现的方法。
执行的结果:
接下来是完整代码:# -*- coding:utf8 -*-
#/usr/bin/env python
class Node(object):
def __init__(self, data, pnext = None):
self.data = data
self._next = pnext
def __repr__(self):
return str(self.data)
class ChainTable(object):
def __init__(self):
self.head = None
self.length = 0
def isEmpty(self):
return (self.length == 0)
def append(self, dataOrNode):
item = None
if isinstance(dataOrNode, Node):
item = dataOrNode
else:
item = Node(dataOrNode)
if not self.head:
self.head = item
self.length += 1
else:
node = self.head
while node._next:
node = node._next
node._next = item
self.length += 1
def delete(self, index):
if self.isEmpty():
print "this chain table is empty."
return
if index < 0 or index >= self.length:
print 'error: out of index'
return
if index == 0:
self.head = self.head._next
self.length -= 1
return
j = 0
node = self.head
prev = self.head
while node._next and j < index:
prev = node
node = node._next
j += 1
if j == index:
prev._next = node._next
self.length -= 1
def insert(self, index, dataOrNode):
if self.isEmpty():
print "this chain tabale is empty"
return
if index < 0 or index >= self.length:
print "error: out of index"
return
item = None
if isinstance(dataOrNode, Node):
item = dataOrNode
else:
item = Node(dataOrNode)
if index == 0:
item._next = self.head
self.head = item
self.length += 1
return
j = 0
node = self.head
prev = self.head
while node._next and j < index:
prev = node
node = node._next
j += 1
if j == index:
item._next = node
prev._next = item
self.length += 1
def update(self, index, data):
if self.isEmpty() or index < 0 or index >= self.length:
print 'error: out of index'
return
j = 0
node = self.head
while node._next and j < index:
node = node._next
j += 1
if j == index:
node.data = data
def getItem(self, index):
if self.isEmpty() or index < 0 or index >= self.length:
print "error: out of index"
return
j = 0
node = self.head
while node._next and j < index:
node = node._next
j += 1
return node.data
def getIndex(self, data):
j = 0
if self.isEmpty():
print "this chain table is empty"
return
node = self.head
while node:
if node.data == data:
return j
node = node._next
j += 1
if j == self.length:
print "%s not found" % str(data)
return
def clear(self):
self.head = None
self.length = 0
def __repr__(self):
if self.isEmpty():
return "empty chain table"
node = self.head
nlist = ''
while node:
nlist += str(node.data) + ' '
node = node._next
return nlist
def __getitem__(self, ind):
if self.isEmpty() or ind < 0 or ind >= self.length:
print "error: out of index"
return
return self.getItem(ind)
def __setitem__(self, ind, val):
if self.isEmpty() or ind < 0 or ind >= self.length:
print "error: out of index"
return
self.update(ind, val)
def __len__(self):
return self.length
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26