如何利用大数据思维来进行用户调研
传统的产品调研,通常需要先行选定用户样本,之后耗费大量人力物力采用不同的调研方法,进行用户调研。如果把大数据应用到用户调研当中,凭借着海量的历史数据样本,对于调研问题,可以借助大数据进行预分析处理,之后再进行人工选择性介入处理,不仅可以提高用户调研的效率,以最快的速度响应用户需求,而且可以极大的降低用户调研的成本。基于此,本文试图利用大数据思维,来解读大数据时代下用户调研的新变化。
说明:本文提供的仅仅是大数据时代下,用户调研的思路。如果有具体的用户调研需求,欢迎向笔者提出,笔者将在下篇推文中,进行具体案例的探讨。
大数据作为一种生产资料,正在越来越深入的影响着人类社会。现在,大数据在电商领域,通过根据相似消费者的商品偏好,向顾客推荐更符合其个人喜好的商品,这一推荐方式不仅仅省去了消费者寻找商品的时间,更是提高了电商平台的收入。
同理,在音乐、电视剧、电影,广告投放、用户调研等领域,大数据的可用武之地也越来越广。那么,大数据时代给用户调研方式带来了哪些改变呢?
大数据被广泛应用以前,传统的用户调研方式,通常需要经过界定调研问题、制定调研计划、综合调研方法、设计调研问卷、总结调研结果这5个步骤。
但是,大数据被广泛应用以后,凭借着海量的历史数据样本,对于调研问题,可以借助多种公开的大数据工具进行预分析处理,之后再进行人工选择性介入处理,将二者进行比对,进行多轮TEST,帮助产品人员发现问题的真相。
一、设置出优秀的调研问题,调研便成功了一半
设置调研问题,处于整个调研的第一个环节,其重要性自然不言而喻。比如某些产品经理可能会提出“用户为什么不接受视频付费”,或者“是否有足够的用户愿意支付15元/月来观看正版高清视频,如果是更低或者更高的价格呢?”前一个调研问题过于宽泛,而后一个调研问题却又界定的过于单一。
如果将调研问题界定为:
当然,并非所有调研的调研内容都能如此具体明了:
有些属于探索性研究,这类调研的目的在于找出问题的真相,提出可能的答案,或新的创意;
有些属于描述性研究,这类调研重在描述项目内容的某些数量特征;
还有一些是因果性研究,这种调研的目的是检测现象之间是否存在因果关系。
二、根据调研问题,进行大数据预分析处理大数据的魅力在于采集的不是样本数据,而是全部数据。例如滴滴推出滴滴外卖服务、美团推出美团打车业务,得益于现代社交网络的发达程度,滴滴和美团几乎可以对微博、微信等社交媒体上的对于新推出服务的议论进行统计分析,从而提供更好的服务。
例如,可以通过百度指数了解网友对于此项服务的搜索行为,同时进行跟踪分析:
当然并不是所有的网友都会使用百度搜索,他们也有可能使用360搜索,这时就要借助360指数:
又或者用户采取其他方式来表达情绪和想法,比如社交媒体微博、微信,可能就会用到微博指数,第三方舆情监测和口碑分析工具,借助新浪微舆情进行口碑分析和文本挖掘:
说明:以上的大数据工具,仅列举了常用的3种。在实际操作中,大数据工具的选择,还需要根据用户具体的调研问题来确定。
三、人工介入,对调研问题进行针对性处理
可以根据大数据分析结果,人工介入到调研问题上来,进行有针对性的调研处理,这时候可以采用传统的调研方法。但是与以往不同的是,在采用这些调研方法时,不需再耗费大量成本进行种种调研。选择人工介入的目的,是为了更真实的感受调研过程,参与调研问题的处理上来。
传统的调研方法,通常有以下4种方式:
1.观察法
这种方法是采取不引人注目的方式,来观察消费者使用产品的情形,以收集最新数据资料。某些战略咨询公司在做调研时,十分信奉观察法。
下面是国内知名的营销咨询公司,华与华在《超级符号就是超级创意》里关于这一方法运用的片段,了解一下:
“比如你在超市里观察牙膏的消费,观察走到牙膏货架前的人,你会看到这样的一个过程:一个顾客推着购物车走过来,一边走一边浏览货架上的牙膏;停下来,注目于一盒牙膏片刻,继续往前走;停下来,拿起一盒牙膏,看后放下;又拿起一盒看看,再翻过来,仔细看包装,背后的文案放回货架;往前走两步,掉头回到最开始注目的那盒牙膏,仔细看看,包装背后的文案,放回货架;快步走回,第四步看的那盒牙膏仍进购物车里,选择结束。”
“不,没结束,他可能过一会儿会折回来,把刚才放进购物车里的牙膏放回货架,换成第二步注目的那盒,也可能两盒都要。这样你就观察到他买牙膏的整个过程,竟然有七个动作。”
2.焦点小组访谈法
这是一种基于人口统计特征、心理统计特征和其他因素的考虑,仔细的招募六到十个人,然后将他们召集在一起,在规定时间内与这些参与者进行讨论的一种调研方式,参与者通常可以得到一些报酬。
调研人员通常坐在座谈是隔壁的,装有单面镜的房间内,对座谈会的讨论过程进行观察。必须要注意的是:实时焦点小组访谈时,必须让参与者尽可能的感受到气氛轻松,力求让他们说真话。
3.行为资料分析法
用户在使用产品时所产生的种种行为都可以用来观察用户的心理,调研人员通过分析这些数据,可以了解用户的许多情况。
用户的浏览时长和浏览内容可以反映用户的实际偏好,它比用户口头提供给调研人员的一些陈述更为可靠。
4.实验法
通过排除所有可能影响观测结果的因素,来获得现象间真正的因果关系。
比如视频网站,向用户提供高清视频服务,第一季度只收费25元每月,第二季度收费15元每月。如果两次不同价格的收费,使用该服务的用户没有差异,那么视频网站就得不出如下结论:较高的服务费用会显著影响用户观看收费视频的意愿。
四、调研方法确定以后,就可以着手调研问卷的设计了
设置调查问卷,是为了收集一手资料。不过,由于问卷中问句的格式、次序和问句的顺序都影响问卷的填答效果,所以对问卷中的问句进行测试和调整是非常必要的。
问卷设计的注意事项:
五、总结调研结果
将大数据统计预分析得到的结果,同产品调研人员实际调研得出的结果,进行比对,从而将数据和信息转换成发现和建议。
最后,大功告成,根据市场调研所得的结果,就可以制定具体的营销决策。
说明:由于在这个过程中,运用传统调研方式,无需耗费大量人力物力,对于可疑结果,可以通过控制变量的方式,进行多轮TEST,帮助产品人员真正发现调研问题的真相。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31