爬取了陈奕迅新歌《我们》10万条评论数据发现:原来,有些人只适合遇见
最近就有一部“怀旧”题材的电影,未播先火,那就是刘若英的处女作——《后来的我们》。青春,爱情,梦想,一直是“怀旧”题材的核心要素,虽然电影现在还未上映,但先行发布的主题曲《我们》,已经虐哭了不少人。在MV里,歌声清清浅浅,诉说着那些年关于爱情里的遗憾。
“我最大的遗憾,就是你的遗憾,与我有关”,下面就和小灯塔一起来感受一下吧。
这首歌是《后来的我们》中的主题曲,网易云音乐上线当天便席卷千万+播放量,现如今光是网易云上面的评论就马上突破了10万条。
网易云音乐一直是我向往的“神坛”,听音乐看到走心的评论的那一刻,高山流水。于是今天我们来抓取一下歌曲的热门评论。并做成图表、词云来展示,看看相对于这首歌最让人有感受的评论内容是什么。
1
抓数据
要想做成词云图表,首先得有数据才行。于是需要一点点的爬虫技巧。
基本思路为:抓包分析、加密信息处理、抓取热门评论信息
抓包分析
我们首先用浏览器打开网易云音乐的网页版,进入陈奕迅《我们》歌曲页面,可以看到下面有评论。接着F12进入开发者控制台(审查元素)。
接下来就要做的是,找到歌曲评论对应的url,并分析验证其数据跟网页现实的数据是否吻合,步骤如下图:
通过歌曲id轻松找到评论所在的链接
查看hreaders的信息,发现浏览器使用的是POST的方式进行的请求
具体字段如上图,会发现表单中需要填两个数据,名称为params和encSecKey。后面紧跟的是一大串字符,换几首歌会发现,每首歌的params和encSecKey都是不一样的,因此,这两个数据可能经过一个特定的算法进行加密过的
服务器返回的和评论相关的数据为json格式的,里面含有非常丰富的信息(比如有关评论者的信息,评论日期,点赞数,评论内容等等),其中hotComments就是我们要找的热门评论,总共15条
那我们的思路就很清晰了,只需要分析这个api并模拟发送请求,获取json进行解析就好了。
加密信息处理
然后经过我的测试,直接把浏览器上这俩数据拿过来就可以。但是要想真正的解决这个加密处理,还需要有点加解密的只是存储。关于这两个参数如何解密,强大的知乎上其实已经有答案的了,感兴趣的朋友可以进去看一下
https://www.zhihu.com/question/36081767
我们在这里就只需要用我们这种偷懒的办法就可以完成需求了。这里我就使用这么个临时的方法好了,而且对于不同的歌曲是可以重用的,待会我们可以验证一下。
抓取热门评论信息
代码块如下:
import requestsimport jsonurl = 'http://music.163.com/weapi/v1/resource/comments/R_SO_4_551816010?csrf_token=568cec564ccadb5f1b29311ece2288f1'headers = { 'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36', 'Referer':'http://music.163.com/song?id=551816010', 'Origin':'http://music.163.com', 'Host':'music.163.com'}
#加密数据,直接拿过来用
user_data = {
'params': 'vRlMDmFsdQgApSPW3Fuh93jGTi/ZN2hZ2MhdqMB503TZaIWYWujKWM4hAJnKoPdV7vMXi5GZX6iOa1aljfQwxnKsNT+5/uJKuxosmdhdBQxvX/uwXSOVdT+0RFcnSPtv',
'encSecKey': '46fddcef9ca665289ff5a8888aa2d3b0490e94ccffe48332eca2d2a775ee932624afea7e95f321d8565fd9101a8fbc5a9cadbe07daa61a27d18e4eb214ff83ad301255722b154f3c1dd1364570c60e3f003e15515de7c6ede0ca6ca255e8e39788c2f72877f64bc68d29fac51d33103c181cad6b0a297fe13cd55aa67333e3e5'
}
response = requests.post(url,headers=headers,data=user_data)
data = json.loads(response.text)
hotcomments = []
for hotcommment in data['hotComments']:
item = {
'nickname':hotcommment['user']['nickname'],
'content':hotcommment['content'],
'likedCount':hotcommment['likedCount']
}
hotcomments.append(item)
#获取评论用户名,内容,以及对应的获赞数
content_list = [content['content'] for content in hotcomments]
nickname = [content['nickname'] for content in hotcomments]
liked_count = [content['likedCount'] for content in hotcomments]
2
在获得相关评论数据后,我们将其做成图表与词云图,将让人看起来更直观。
接下来需要在自己电脑上安装需要相关的安装包: pyecharts(图表包)、matplotlib(绘图功能包)、 WordCloud(词云包)
其中,pyecharts 是一个用于生成 Echarts 图表的类库。 Echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化,同时pyecharts 兼容 Python2 和 Python3。安装非常简单,只需:
pip install pyecharts
关于WordCloud(词云包)安装过程中出现问题,可以看看我之前这篇文章:
https://zhuanlan.zhihu.com/p/33507393
接下来就是代码的实现:
利用之前获得评论用户名和对应的点赞数,将其制作成图表图:
from pyecharts import Bar
bar = Bar("热评中点赞数示例图")
bar.add( "点赞数",nickname, liked_count, is_stack=True,mark_line=["min", "max"],mark_point=["average"])
bar.render()
由此可以看出,获得最高赞数(95056)评论是:
@鱼大叔Uncle:后来的我,离开了他,永远的离开了他,十年的感情不过寥寥几句话。后来的我,嫁给了一个很普通的人,没有他的浪漫,却有不一样的温暖。
大多数赞数为20000-30000之间,最低都达到7000+,(基本与网页里评论中数据吻合)。
最后,我们将所有的热门评论内容,制作成词云图展示出来,代码块如下:
from wordcloud import WordCloud
import matplotlib.pyplot as plt
content_text = " ".join(content_list)
wordcloud = WordCloud(font_path=r"C:simhei.ttf",max_words=200).generate(content_text)
plt.figure()
plt.imshow(wordcloud,interpolation='bilinear')
plt.axis('off')
plt.show()
结果图:
从图中可以看出,很多人感慨,后来只有你我,再无我们。
注明:所有数据,是属于当时所爬取的数据。
3
后记
曾记得,郭敬明在书里写,“我们太年轻,以致于都不知道以后的时光,竟然那么长,长得足够让我忘记你,足够让我重新喜欢一个人,就像当初喜欢你那样。”
我们这一生,总是遇到太多的后来。从不懂爱到懂爱,从拥有到珍惜。
所幸是到了最后,无论过了多少年。后来的我们,都在对方身上,学会了如何去爱。
就像陈奕迅在歌里唱的,“有过执着,放下执着”。有些人啊,光是遇见就已经值得了。
我们确实没有了后来。
就让后来的我们,慢慢走,别回头。
不谈亏欠,感谢遇见。
只是在下一次遇见爱的时候,我们都要学会更懂得珍惜。
这才是爱的意义,也是我们为什么去爱。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13