正确运用避免陷入大数据的“陷阱”
通常,对于新的IT关键词必定会出现“反对派”。最近,“大数据”就成为被攻击的对象,诸如“大数据失败论”等论调也明显增加。
业界对大数据抱着极大的期待,这一点从大量的大数据研讨会和展示会风潮就足以证明。这些年来,除了云计算浪潮,缺乏热烈话题的IT业界而言,大数据是期待已久的大型关键词,也许大数据会成为恢复业界活力的强心剂。
与此同时,日本政府提出新的IT战略--“将行政数据向民间开发,以便不断创造新商务”。也就是说,如何有效利用数据,推动商业成功,业已成为国家战略的一环。
虽然笔者既不是强烈的赞成派也不是反对派,但通过以往的采访经验,对处理数据的难度有着清醒的认识。更何况涉及到大数据,其难度显而易见。
笔者周边很多人对大数据也有着各种不同的看法,提出各种问题。当然这些对于IT业界的读者而言,都是理所当然的事情,笔者说这些也许是班门弄斧了。但是,正是这些众所周知的道理通常也是非常重要不可忽视的。因此,下面笔者将重新提出大数据的“陷阱”,探讨如何才能避免运用大数据的失败。
是否真正需要大量的数据
首先,必须明确的一点是,是否真正需要大量的数据。
在一次活动中,一位统计分析的专家在谈到大数据时说:“本来统计分析学是如何通过少量的取样,去了解事务整体的学问。例如,电视的收视率调查就是一个典型的事例,这类调查就是通过极少的样本,来掌握日本全国的收视状况。如果目的明确,并不需要大量的数据。”
由于上述言论出自目前作为“数据科学家”备受瞩目的统计分析方面的专家之口,让笔者不禁大吃一惊。这就是说,只要有一定量的数据,无关数据数量,分析的结果并不会有很大的差别。如果果真如此,不禁让人产生怀疑,即到底大数据是为何而存在。
听到上述观点,使人感到大数据所面临的矛盾的应当不仅仅是笔者一人。本以为通过大数据分析,满怀期待能够发现以往没有认识到的新的东西,但有时其结果不过是已有所知的事实而已。如果企业为系统开发投入数十亿日元,得出的不过是证明资深职员“经验”的结论,这也未免让人难以接受。
正因为如此,就有必要重新考虑为何需要大数据这一问题。例如,企业需要明确通过将有交易往来的公司和社交媒体等本企业外的大量数据进行组合,是为达到何种目的等,即有必要事先制定大数据的目标。
数据的“质量”有无问题
第二点是由谁来维护大量的数据,即数据的“质量”如何能够得到保障。
笔者曾听说这样一件事。某企业的总经理每个月都会收到有交易往来的IT供应商的宣传(PR)杂志,但收件人的头衔不是“总经理”,而是他曾经兼任公司CIO时的头衔“常务董事”。虽然将头衔搞错,但还是都能收到,因此并没有太在意。但当这家IT供应商的总经理到公司进行礼节性拜访时,就提出了希望改一下头衔的想法。
而这家IT供应商的新的卖点是大数据,公司的总经理当场表示回去马上会进行修改。起初以为这点事情对于运营大数据业务的IT供应商而言不过是举手之劳,一定会进行纠正。但是,等到下一个月他收到的的PR杂志时,发现收件人的头衔仍然是“常务董事”。这位总经理通过两本PR杂志感到仿佛看到了大数据的现状,因此他非常失望地说:“归根到底IT供应商并没有维护顾客数据库”。
上述例子虽然是顾客数据,而不仅仅是顾客数据,说到大数据必然还需要处理很多各种各样的企业外部的数据。但是,这些数据是否是最新数据,其数据的精确度又如何等数据的“质量”就会非常重要。分析出处不明的数据将毫无意义。如果顾客数据不能随时进行维护,也就不会产生任何价值。不应当将当初以为是宝山的大数据,变成一座堆满垃圾的山。
是否忽视了现场职工的工作干劲
第三点就是企业不仅应当努力培养数据科学家,同时也需要提升现场职员的分析数据的能力。如果在店头等现场直接接触顾客的员工变得“擅长数字”,他们也能够常常通过数据考虑事情并进行判断,这样的企业必定会强大起来。
例如,有一家超市的店头销售员就从与顾客的对话中得到启发,通过购进新的商品或是改变商品陈列的方法,提升了销售额。又比如,在特快列车上负责销售的员工,发现似乎“可吸烟座位的咖啡畅销”,当他整理出不同列车的销售业绩,结果发现确实是如此。于是决定在吸烟车厢集中推销咖啡,结果咖啡的销售量明显增加。
当然,通过现场增加的销售额,也许和利用大数据获得的销售数字相比很小,而且其分析能力也远远不及数据科学家。但是即便如此,如果通过将这种方式横向拓展到其他现场,积累的数字也会非常可观。同时,最为重要的是,这种方式能够提升现场员工的工作动力。
实际上,某零售企业自从将其销售分析统一由总公司实施后,店头员工就失去干劲,甚至出现退职的员工。这说明只依靠上级的指令,则会降低现场的职业道德。因此,这家公司决定给予现场员工自由分析判断的职能,由此店头又重新恢复了活力。虽然大数据非常重要,但是如果将权限集中在某些部门,则会导致现场丧失工作干劲。
以上三点实际上不仅仅对大数据而言非常重要,而且同时适用于整个信息系统。大数据是IT业界期待已久的关键词,为使其成长壮大,就需要脚踏实地的努力,而不应被其华丽的部分所束缚摆弄。正因为如此,笔者认为提出的上述三点需要重新铭记心中。
数据分析咨询请扫描二维码
在如今的数据驱动时代,掌握数据分析的工具和方法不仅是提高工作效率的关键,也是开拓职业机会的重要技能。数据分析涉及从数据的 ...
2024-11-08在现代商业环境中,企业正在逐步认识到数据挖掘技术在客户行为分析中的重要性。通过深度分析客户数据,这项技术不仅可以帮助企业 ...
2024-11-08数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08在当今快速发展的商业环境中,提高运营效率已成为企业取得成功的关键因素。企业需要通过优化工作流程、利用技术创新和提升员工技 ...
2024-11-08Python 是一门非常适合初学者学习的编程语言。其简洁明了的语法、丰富的功能库,以及广泛的应用领域,使其成为学习编程的理想选 ...
2024-11-08在当今快速变化的商业环境中,金融数字化已经成为中小企业(SMEs)发展的关键驱动力。通过采用数字工具和技术,中小企业能够提高 ...
2024-11-08中小企业在全球经济中扮演着重要角色,然而,面对数字化浪潮,这些企业如何有效转型成为一大挑战。数字化转型不仅是技术的升级, ...
2024-11-08选择合适的数据分析方法是数据分析流程中的关键环节。它影响最终结论的准确性和可信度。在这个过程中,需要综合考虑数据的性质、 ...
2024-11-08在当今数据驱动的商业环境中,数据分析师扮演着至关重要的角色。他们帮助企业从大量数据中提取有用的洞察,从而推动决策制定和战 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,数据挖掘发挥着至关重要的作用。它不仅帮助企业从庞大的数据集中提取有价值的信息,还为企业的决策和业务运营 ...
2024-11-07数据分析可视化是一种通过图形化方式展现数据的技术,它使复杂的数据变得直观易懂,从而帮助我们更好地做出决策。在这个快速发展 ...
2024-11-07数据分析是一项至关重要的技能,尤其在当今数据驱动的世界中。Python以其强大的库和简单的语法成为了数据分析领域的佼佼者。本文 ...
2024-11-07在现代数据驱动的环境中,数据分析师扮演着至关重要的角色。他们需要掌握多种工具,以满足数据分析、处理和可视化的需求。无论是 ...
2024-11-07作为一名业务分析师,你将发现自己处于企业决策和数据驱动战略之间的桥梁位置。这个角色要求掌握一系列技能,以便有效地将数据转 ...
2024-11-07CDA中科院城市环境研究所(厦门)内训圆满成功 2017年9月12日-15日,CDA数据分析师在中科院城市环境研究所(厦门)进行了 ...
2024-11-07数据分析是现代商业和研究领域不可或缺的重要工具。无论是为了提高业务决策的准确性,还是为了发掘隐藏在数据中的潜在价值,了解 ...
2024-11-06数据分析是一个精细且有序的过程,旨在从海量数据中提取有用的信息,为决策提供有力支持。无论你是新手还是有经验的分析师,理解 ...
2024-11-06在当今竞争激烈的商业环境中,业务分析师(Business Analyst, BA)的角色变得愈加重要。随着企业对数据驱动决策的依赖加深,业务 ...
2024-11-06