拥抱大数据:“数”中自有黄金屋
新的石油”、“类似货币或黄金的新型经济资产”、“未来的自然资源”……
今天,当人们在评价种类广泛、数量庞大、产生和更新速度惊人的大数据时,几乎没有人会吝啬这些极富有渲染性甚至有些耸人听闻的话语。伴随着大数据在各行各业的探索之路的启程,其蕴含的巨大价值所显露出的“冰山一角”就已然拥有足以令世人惊叹的力量。
大数据究竟价值几何?
“当前,数据就是生产资料,对大数据的合理共享和利用,就会创造出巨大的财富。”中国工程院院士邬贺铨在接受《人民邮电》报记者采访时如是说。正因为大数据有着公认的“生产资料”的属性,因此其创造财富的空间,几乎是不受任何限制的,其触角可以延伸至各行各业。
从宏观经济到微观经济,从工业到农业,从制造业到服务业,大数据就如同埋藏在沙漠中的金子一样,正在散发出迷人的光芒。
正如邬贺铨所说:“大数据技术可以运用到各行各业,引发新的产业变革,带动新的产业发展。”来自美国研究机构的统计数据也有力地证明了这一点:大数据能够为美国医疗服务业每年带来3000亿美元的价值,为欧洲的公共管理每年带来2500亿欧元的价值,帮助美国零售业提升60%的净利润,帮助美国制造业降低50%的产品开发和组装成本。
谁率先把握住了大数据的机遇,谁就拥有了创造新的财富的可能,拥有了在激烈的市场竞争中傲视群雄的可能。
因为通过对海量数据的分析,可以发现行业的运行规律、市场的偏好与机会等这些最为宝贵的信息,从而让企业决策变得更加有的放矢。以一瓶价格并不贵、看似不起眼的矿泉水为例,基于对一线销售数据的实时分析与更新进行的经营战略和业务策略调整,居然能够带来销售额从20亿元到百亿元的提升,这正是发生在农夫山泉身上的真实案例。类似的案例越来越多,与此同时,大数据的价值也在各行各业中显露出来。现在,几乎无人会质疑大数据的价值,如何获取价值,则成为人们当前关注的焦点。
如何从沙漠中淘到黄金?
尽管大数据有着巨大的价值,但面对广阔的数字沙漠,如何才能发现埋藏于其中星星点点的黄金呢?
“今天的数据是泛滥的,低密度、杂乱无章、海量的大数据本身,并没有什么太多的价值,只有对大数据的挖掘和处理,才能产生价值。”北京航空航天大学校长、中科院院士怀进鹏向《人民邮电》报记者抛出了如是观点,而这正代表了时下业界的主流思潮。从大数据“不仅如此多,而且变化也如此快”的现状出发,“怎么才能挖掘出有价值的东西”,就成为淘金的必由之路了。对此,怀进鹏认为,必须依靠技术、科学的手段,例如寻找到最优的算法和最简单的算法。
事实上,大数据的兴起,与技术的进步几乎是相伴而生的。正如中国联通信息化事业部副总经理耿向东在接受记者采访时再三强调的那样:“过去,对数据的处理成本比较高,因此当人们在考虑到整体拥有成本这一巨大代价时,就会放弃对数据的处理;现在,不仅数据处理的手段变得丰富起来,而且成本也得到了降低,从而令人们能够方便、规模地应用大数据。”正是因为计算、存储等技术的飞速发展和成本的降低以及软硬件一体机等创新产品的出现,促使过去数据挖掘的两大难题迎刃而解,即存在着无法处理的数据和处理成本过高问题,最终让大数据实现了今天的价值化。
值得注意的是,应对数据挖掘的挑战,将围绕数据价值化的全过程。邬贺铨表示,从数据收集、数据存储到数据处理和结果的可视化呈现这四个环节,大数据技术的运用都面临着挑战。与此同时,一个全新的职业——数据科学家也正在诞生,而《哈佛商业评论》甚至称其为21世纪“最性感”的工作。
谁来保卫我们的“财富”?
与大数据创造的财富相伴的是人们自然而然产生的对于安全的渴望。因为缺少安全保证的财富,并不是真正地“抓”在了手中。可以说,安全是大数据不能回避而且在应用之初就必须给出解决方案的课题。
“没有坏数据,只有对数据的不合理使用。”微软研究及策略部门主管克瑞格·蒙迪用简单的一句话道出了大数据安全的核心所在。今天,当谁都可以利用数据挖掘工具获取、分析数据时,如同“皇冠上明珠”的大数据就面临着谁都可以触摸的危险。在大数据时代,如何避免数据被窃取和不合理使用?答案同样是依靠技术进步。例如,世界经济论坛在2013年2月即提出要通过高端科技来保护隐私,将安全策略的重心从管理转移到对数据的限制使用上来。
确保数据的合理使用,离不开技术和制度的“双管齐下”。例如,世界经济论坛就提出所有对于数据的使用都应该登记,同时对于那些违反规定滥用数据的人要采取处罚措施。而耿向东也表示,中国联通目前正在从技术和制度两方面入手确保数据的安全,例如对用户信息进行加密、为信息传输提供通道保护等。
不容忽视的是,对于“财富”的保护,反过来也会催生出新的商机。大数据正在重构信息安全市场,而那些能够率先切入这场变革的安全厂商,无疑会为未来抢占新的制高点奠定一个好的基础。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21