详解Python中映射类型的内建函数和工厂函数
1.基本函数介绍
(1)标准类型函数[type()、str()和 cmp()]
对一个字典调用type()工厂方法,会返回字典类型:“
字典是通过这样的算法来比较的:首先是字典的大小,然后是键,最后是值。可是用cmp()做字典的比较一般不是很有用。
算法按照以下的顺序:
首先比较字典长度
如果字典的长度不同,那么用cmp(dict1, dict2)比较大小时,如果字典dict1比dict2长,cmp()返回正值,如果dict2比dict1长,则返回负值。也就是说字典中的键的个数越多,这个字典就越大,即:len(dict1) > len(dict2) ==> dict1 > dict2。
其次比较字典的键
如果两个字典的长度相同,那就按字典的键比较。键比较的顺序和keys()方法返回键的顺序相同。(注意: 相同的键会映射到哈希表的同一位置,这保证了对字典键的检查的一致性)。这时,如果两个字典的键不匹配时,对这两个(不匹配的键)直接进行比较。当dict1中第一个不同的键大于dict2中第一个不同的键,cmp()会返回正值。
然后比较字典的值
如果两个字典的长度相同而且它们的键也完全匹配,则用字典中每个相同的键所对应的值进行比较。一旦出现不匹配的值,就对
这两个值进行直接比较。若dict1比dict2中相同的键所对应的值大,cmp()会返回正值。
完全匹配
到此为止,即每个字典有相同的长度、相同的键、每个键也对应相同的值,则字典完全匹配,返回 0 值。
(2)映射类型相关的函数
dict()
工厂函数被用来创建字典,如果不提供参数会生成空字典。当容器类型对象做为一个参数传递给方法 dict(),如果参数是可以迭代的,即一个序列或是一个迭代器或是一个支持迭代的对象,那每个可迭代的元素必须成对出现。在每个值对中,第一个元素是字典的键、第二个元素是字典中的值。
>>> dict(zip(('x', 'y'), (1, 2)))
{'y': 2, 'x': 1}
>>> dict([['x', 1], ['y', 2]])
{'y': 2, 'x': 1}
>>> dict([('xy'[i-1], i) for i in range(1,3)])
{'y': 2, 'x': 1}
如果输入参数是(另)一个映射对象,比如一个字典对象,对其调用dict()会从存在的字典里复制内容来生成新的字典。新生成的字典是原来字典对象的浅复制版本,它与用字典的内建方法copy()生成的字典对象是一样的。但是从已存在的字典生成新的字典速度比用copy()方法慢,推荐使用copy()。
len()
内建函数len()很灵活,它可用在序列、映射类型和集合上。对字典调用 len(),它会返回所有元素(键-值对)的数目。
hash()
内建函数hash()本身并不是为字典设计的方法,但它可以判断某个对象是否可以做一个字典的键。将一个对象作为参数传递给 hash(),会返回这个对象的哈希值。 只有这个对象是可哈希的,才可作为字典的键 (函数的返回值是整数,不产生错误或异常)。如果用比较操作符来比较两个数值,发现它们是相等的,那么即使二者的数据类型不同, 它们也会得到相同的哈希值。如果非可哈希类型作为参数传递给hash()方法,会产生TypeError错误,因此如果使用这样的对象作为键给字典赋值时会出错。
2.映射类型的内建函数和工厂函数使用实例
标准类型函数[type(),str()和cmp()]
字典比较算法
>>> dict1 = {}
>>> dict2 = {'host':'earth','port':80}
>>> cmp(dict1,dict2)
-1
>>> dict1['host'] = 'earth'
>>> cmp(dict1,dict2)
-1
>>> dict1['port'] = 80
>>> cmp(dict1,dict2)
0
>>> dict1['port'] = 'tcp'
>>> cmp(dict1,dict2)
1
>>> dict2['port'] = 'udp'
>>> cmp(dict1,dict2)
-1
>>> cdict = {'fruits':1}
>>> ddict = {'fruits':1}
>>> cmp(cdict,ddict)
0
>>> cdict['oranges'] = 0
>>> cdict['apples'] = 0
>>> cmp(cdict,ddict)
1
映射类型相关的函数
dict()
>>> dict(zip(('x','y'),(1,2)))
{'y': 2, 'x': 1}
>>> dict([['x',1],['y',2]])
{'y': 2, 'x': 1}
>>> dict([('xy'[i-1],i) for i in range(1,3)])
{'y': 2, 'x': 1}
>>> dict(x=1,y=2)
{'y': 2, 'x': 1}
>>> dict8 = dict(x=1,y=2)
>>> dict8
{'y': 2, 'x': 1}
>>> dict9 = dict(**dict8)
>>> dict9
{'y': 2, 'x': 1}
>>> dict9 = dict8.copy()
>>> dict9
{'y': 2, 'x': 1}
len()
>>> dict2 = {'name':'earth','port':80}
>>> dict2
{'name': 'earth', 'port': 80}
>>> len(dict2)
2
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12