我的第一份数据科学实习
在写本文时,这是我在Quantum Inventions公司实习的最后一天。当我坐在电脑屏幕前,反思过去几个月的学习历程,我感到非常的满足。
在实习即将结束时,萦绕在我脑中的问题是:我学到了些什么?这是我想要的吗?
作为一名物理学家,我习惯通过推理解答问题从而来寻求真相。事实上,对数据科学家来说,问合适的问题也是至关重要的。
本文分为三个部分:实习前,实习期间,实习后。当中记叙了在这段经历中我所得到的收获。也欢迎阅读我上一篇文章《我是如何从物理学转行到数据科学领域》。
实习前
我仍然清楚地记得,在2017年11月的期末时我开始阅读《统计学习导论:基于R应用》(An Introduction to Statistical Learning — with Applications in R)。这是第一次接触到基础的机器学习知识。
一旦掌握了这些概念之后,我就开始学习热门的课程Coursera上吴恩达的《机器学习》。虽然刚开始的时候并不那么轻松,但是吴恩达能够吸引人们的注意力,用简单的方式解读复杂的概念。这也许就是我喜欢上机器学习的原因之一。我也强烈建议你试试,机器学习并没有听上去那么高大上和复杂。
同时,我开始学习人工智能的另一个重要领域——深度学习。
在掌握了一定的基础知识之后,我在2017年12月开始了我的第一份数据科学实习。
实习期间
Quantum Inventions专注于向消费者、企业和政府智能交通服务。我是第一位加入研发和分析团队的数据科学实习生。
在刚开始的几天,我认识到了许多出色的同事,接触到许多行业术语以及正在进行的项目。在这次实习中,Quantum Inventions给了我足够的信任和自由,让我能够选择感兴趣的项目,并为其而努力。
令我吃惊的是,目前我着手的这个项目是之前没有人做过的。这时就需要大量的研究,存在许多不确定性和困难,但是我仍然乐在其中。为什么呢?很简单,因为我能够有机会从头开始体验整个数据科学工作流程。
下面我将列出我所经历的工作流程,在这一过程中为我进入数据科学领域打下了一定的基础。希望能够给你带来一些帮助。
1. 了解业务问题
我所选的项目是预测短期高速公路行程时间。正如我所说的,提出合适的问题对数据科学家来说非常重要。 在项目完成前,需要提出大量的问题,从而了解实际的业务问题:可用的数据源,项目的最终目标等等。我们的目标是更准确地预测新加坡高速公路行程时间。
2. 收集数据源
我对新项目感到十分兴奋,然后我开始从数据库等渠道收集数据源。收集正确的数据源类似在不同网站抓取数据,以便稍后进行数据预处理。这一过程非常重要,这可能会影响你在后期建立模型的准确性。
3. 数据预处理
真实世界的数据并不那么理想。我们不能期望会获得Kaggle比赛中那样格式良好且干净的数据。因此,数据预处理(也称为数据管理或数据清理)至关重要。该过程占到整个工作流程的40%-70%,对提供给模型的数据进行清理。
Garbage in, Garbage out。(无用输入,无用输出)
我喜欢数据科学的一点在于,你必须对自己诚实。如果你没有把握,认为预处理的数据已经足够干净,并可以提供给模型,那么将存在使用错误数据构建模型的风险。换句话说,你需要从专业的角度质疑自己,确认数据是否可以使用。严格用阈值检查数据,确认整个数据集中是否存在其他异常、缺失或不一致的数据。
我对这个过程格外谨慎,之前我仅仅因为预处理步骤中的小疏忽就给模型提供了错误的数据。
4. 建立模型
经过一番研究,对于项目我提出了以下四个模型:支持向量回归(SVR),多层感知器(MLP),长期短期记忆网咯(LSTM)和状态空间神经网络(SSNN)。
对于还在学习在线课程的我来说,从头开始构建不同的模型无疑是十分困难的。幸运的是,Scikit-learn and Keras拯救了我,因为它们很容易学习,能够快速构建原型模型,并用Python进行编写。此外,我还学习了如何使用多种技术优化模型,并调整每个模型的参数。
5. 模型评估
为了评估每个模型的性能,我主要使用了以下指标:
· 平均绝对误差(MAE)
· 均方误差(MSE)
· 测定系数(R2)
在这个阶段,重复步骤3-5(可互换),直到得出的最佳模型能够超越基线估计。
实习后
这次实习加深了我对数据科学领域的热爱,这段经历为我之后的工作也提供了一些动力。我也大大提高了自身的能力,比如与不同人群进行利益的沟通技巧,利用数据解决业务问题等等。
数据科学行业还是一个新兴领域,对于我们这些求职者来说,有时当中的一些工作描述可能有些模棱两可。因此在求职时,发现自己不具备岗位所需的全部技能是完全正常的,因为大多数工作描述都是按照理想的方式写的,从而符合雇主的期望。
当在学习或工作中遇到疑问时,你可以从在线课程、书籍和文章中进行学习,这也是我仍在做的,并通过个人项目或实习来应用所学到的知识。请耐心一点,学习的过程需要大量的精力和时间。
在最后,记得问自己:你学到了什么?这是你要的吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13