大数据如何改变商业_未来五年路线图_数据分析师
如果说2012年是大数据概念为人所知、引人瞩目、小试牛刀的一年,那么2013年大数据将会实现产品部署,早期投资获得回报,一小部分的产业被颠覆。到了2014年,各种大数据项目和系统很可能成为标准配置,到处可见。原文来自 ZDNet,由虎嗅编译。
今年,大数据和云计算一起作为科技术语出现。大数据意味着非常多的事情,但是被援引的次数太多了,几乎失去了其本来的定义。大数据的定义通常和速率(数据移动得快),体积(数据规模庞大),和种类(非结构化和结构化的信息)三点有关。
大数据真的如人们所描述的那样吗?是的。对我来说,大数据代表了科技和商业的一致——也就是首席信息官们始终追求的圣杯(Holy Grail)——成为了一件顺理成章的事情。大数据项目从本质上来说和营收、风险利润是相关的。换句话说,信息科技和商业世界情不自禁地联合了起来。
显然我们正处在一个追捧大数据的阶段,我认为可以和1990年代末的Linux和2000年代初的开源软件运动相提并论。那时候Linux正要开始改变世界,和微软等厂商一较高下。从许多方面来说,Linux和开源软件(比如安卓)的确改变了一切。但是在行业变革的过程中发生了一个有趣的事情——开放软件成了每一个数据中心的标准配置,如今已经被认为是理所应当了。这场变革发生了,我们仅仅是不再谈论它而已。云计算也是一样。
大数据会遵循同样的发展路线。当然,会创造数百万个工作机会,相关人才也会变得有一点抢手。公司们也会用大数据升级各自的行业。随着Cloudera这样的创业公司成为新的红帽子(Red Hats),各家厂商的市场座次也逐渐明朗。
如下是我对大数据未来几年的展望。
2013年:2012年的试验项目成品化,每一个行业的垂直领域都会有一个成功的大数据案例。
2014年:在2013年成功经验和客户研究案例的基础上,一些行动快速的市场跟随者将进入大数据领域。各个行业都将遵循大数据的游戏规则。初期的回报看上去会很不错。公司的主要关注点在内部数据上,因为有很多东西可以挖掘。外部数据也很有用,但是这段时期不会有什么新进展。
2015年:在制定大数据计划时,公司们开始将目光投向外部数据。在2015年之前,消费者所面对的公司都在花费大部分时间用于研究外部信息。每一个分析师和数据仓库都将会有一个Hadoop计算簇和一个大数据层。像Hadoop这样的技术不再受人关注,因为这些技术始终非常重要,慢慢淡化进入软件栈。围绕大数据题材的整合并购开始加速。
2016年:数据驱动的决策代替了直觉和常识。这个时候公司们要开始仔细思考数据的使用,避免出现无意义的数据。公司会因为错误解读了数据而导致重大事故的发生。
2017年:云和大数据、数据仓库合并起来,成为了一项服务,“分析即服务”和“数据即服务”成为主流。很少有公司真正考虑创建自己的Hadoop计算簇进行整合工作。大数据基础设施即将实现。注意:2017年是这些大数据即服务为大众所普及的一个估算时间。大数据即服务的市场竞争在这个时间段正在进行,将会于不久涉及到关键的大范围用户群。
大数据在IT采购周期上又是怎样的情况呢?大数据项目需要有更多高级别的管理人员。分析如下:
首席信息官:大数据项目终于能让首席信息官解决一直以来的“我们一致吗?”问题。
首席财务官:将大数据分析作为控制成本、最大化利润的方式。潜在风险是公司有可能因为忽略人的因素而失去好的机会。
首席市场官:2012年,首席市场官成了IT采购的红人。不过这有点不太合理,因为首席市场官主要依赖外部数据和信号判断项目。
首席运营官,采购人员:大数据可以让存货、供应和制造过程自始至终都可以进行追踪。效率能够得到改进。
数据科学家:这部分员工越来越被看作是“首席”管理层的接班人。职场方面,数据高手想去哪家公司都行。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20