Python连接MySQL并使用fetchall()方法过滤特殊字符
来一个简单的例子,看Python如何操作数据库,相比Java的JDBC来说,确实非常简单,省去了很多复杂的重复工作,只关心数据的获取与操作。
准备工作
需要有相应的环境和模块:
Ubuntu 14.04 64bit
Python 2.7.6
MySQLdb
注意:Ubuntu 自带安装了Python,但是要使用Python连接数据库,还需要安装MySQLdb模块,安装方法也很简单:
sudo apt-get install MySQLdb
然后进入Python环境,import这个包,如果没有报错,则安装成功了:
python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import MySQLdb
>>>
Python标准的数据库接口的Python DB-API(包括Python操作MySQL)。大多数Python数据库接口坚持这个标准。不同的数据库也就需要不同额模块,由于我本机装的是MySQL,所以使用了MySQLdb模块,对不同的数据库而言,只需要更改底层实现了接口的模块,代码不需要改,这就是模块的作用。
Python数据库操作
首先我们需要一个测试表
建表语句:
CREATE DATABASE study;
use study;
DROP TABLE IF EXISTS python_demo;
CREATE TABLE python_demo (
id int NOT NULL AUTO_INCREMENT COMMENT '主键,自增',
user_no int NOT NULL COMMENT '用户编号',
user_name VARBINARY(50) NOT NULL COMMENT '用户名',
password VARBINARY(50) NOT NULL COMMENT '用户密码',
remark VARBINARY(255) NOT NULL COMMENT '用户备注',
PRIMARY KEY (id,user_no)
)ENGINE =innodb DEFAULT CHARSET = utf8 COMMENT '用户测试表';
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1001,'张三01','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1002,'张三02','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1003,'张三03','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1004,'张三04','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1005,'张三05','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1006,'张三06','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1007,'张三07','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1008,'张三08','admin','我是张三');
Python代码
# --coding=utf8--
import ConfigParser
import sys
import MySQLdb
def init_db():
try:
conn = MySQLdb.connect(host=conf.get('Database', 'host'),
user=conf.get('Database', 'user'),
passwd=conf.get('Database', 'passwd'),
db=conf.get('Database', 'db'),
charset='utf8')
return conn
except:
print "Error:数据库连接错误"
return None
def select_demo(conn, sql):
try:
cursor = conn.cursor()
cursor.execute(sql)
return cursor.fetchall()
except:
print "Error:数据库连接错误"
return None
def update_demo():
pass
def delete_demo():
pass
def insert_demo():
pass
if __name__ == '__main__':
conf = ConfigParser.ConfigParser()
conf.read('mysql.conf')
conn = init_db()
sql = "select * from %s" % conf.get('Database', 'table')
data = select_demo(conn, sql)
pass
fetchall()字段特殊字符过滤处理
最近在做数据仓库的迁移工作,之前数据仓库的数据都是用的shell脚本来抽取,后来换了python脚本.
但是在把数据抽取存放到hadoop时,出现了一个问题:
由于数据库字段很多,提前也不知道数据库字段会存储什么内容,hive建表是以\t\n做分隔,这就导致了一个问题,如果mysql字段内容里面本身含有\t\n,那么就会出现字段错位情况,并且很头疼的是mysql有100多个字段,也不知道哪个字段会出现这个问题.
shell脚本里的做法是在需要抽取的字段上用mysql的replace函数对字段进行替换,例如,假设mysql里的字段是column1 varchar(2000),那么很可能就会出现有特殊字符的情况,在查询的sql语句里加上
select replace(replace(replace(column1,'\r',''),'\n',''),'\t','')
之前一直是这么干的,但是这样写sql特别长,特别是有100多个字段,也不知道哪个有特殊字符,只要都加上.
所以在python中对字段不加处理,最终导致hive表字段对应出现偏差,所以在python里从mysql查询到的字段在写到文件之前需要对每个字段进行过滤处理
看个例子,我就以mysql测试为例,首先建一张测试表
CREATE TABLE `filter_fields` (
`field1` varchar(50) DEFAULT NULL,
`field2` varchar(50) DEFAULT NULL,
`field3` varchar(50) DEFAULT NULL,
`field4` varchar(50) DEFAULT NULL,
`field5` varchar(50) DEFAULT NULL,
`field6` varchar(50) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
有六个字段,都是varchar类型,插入新数据可以在里面插入特殊字符.简单插入条数据测试看看:
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test01','test02','test03','test04','test05','test06');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test11\ntest11','test12\n\n','test13','test14','test15','test16');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test21\ttest21','test22\ttest22\ttest22','test23\t\t\t','test4','test5','test6');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test21\rest21','test22\r\rest22\r\rest22','test23\r\r\r','test4','test5','test6');
其中数据里插入的特殊字符,可能连在一起,也有不连在一起的.
python测试代码:
# coding=utf-8
import MySQLdb
import sys
db_host = '127.0.0.1' # 数据库地址
db_port = 3306 # 数据库端口
db_user = 'root' # mysql用户名
db_pwd = 'yourpassword' # mysql用户密码,换成你的密码
db_name = 'test' # 数据库名
db_table = 'filter_fields' # 数据库表
# 过滤sql字段结果中的\t\n
def extract_data(table_name):
try:
conn = MySQLdb.connect(host=db_host, port = db_port, user=db_user,
passwd = db_pwd, db = db_name, charset = "utf8")
cursor = conn.cursor()
except MySQLdb.Error, e:
print '数据库连接异常'
sys.exit(1)
try:
sql = 'select * from %s;'%(table_name)
cursor.execute(sql)
rows = cursor.fetchall()
print '====字段未过滤查询结果===='
for row in rows:
print row
print '====字段过滤之后结果===='
rows_list = []
for row in rows:
row_list = []
for column in row:
row_list.append(column.replace('\t', '').replace('\n', '').replace('\r', ''))
rows_list.append(row_list)
print rows_list[-1] # [-1]表示列表最后一个元素
return rows_list
except MySQLdb.Error, e:
print '执行sql语句失败'
cursor.close()
conn.close()
sys.exit(1)
if __name__ == '__main__':
print 'begin:'
rows = extract_data(db_table)
pass
看看输出结果:
字段未过滤查询结果
(u'test01', u'test02', u'test03', u'test04', u'test05', u'test06')
(u'test11\ntest11', u'test12\n\n', u'test13', u'test14', u'test15', u'test16')
(u'test21\ttest21', u'test22\ttest22\ttest22', u'test23\t\t\t', u'test4', u'test5', u'test6')
(u'test21\rest21', u'test22\r\rest22\r\rest22', u'test23\r\r\r', u'test4', u'test5', u'test6')
字段过滤之后结果
[u'test01', u'test02', u'test03', u'test04', u'test05', u'test06']
[u'test11test11', u'test12', u'test13', u'test14', u'test15', u'test16']
[u'test21test21', u'test22test22test22', u'test23', u'test4', u'test5', u'test6']
[u'test21est21', u'test22est22est22', u'test23', u'test4', u'test5', u'test6']
可以看到,制表符,换行符,回车都被过滤了.
建议:最后说点题外话,不要小视\r,回车符.很多人以为回车符就是换行符,其实不是的,\r表示回车符,\n表示新行.之前代码里其实是过滤掉了\t\n的,但是抽取的数据还是不对,后来看了源码之后才发现,原来是没有过滤\r,就这个不同导致了很多数据抽取不对.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24