Python连接MySQL并使用fetchall()方法过滤特殊字符
来一个简单的例子,看Python如何操作数据库,相比Java的JDBC来说,确实非常简单,省去了很多复杂的重复工作,只关心数据的获取与操作。
准备工作
需要有相应的环境和模块:
Ubuntu 14.04 64bit
Python 2.7.6
MySQLdb
注意:Ubuntu 自带安装了Python,但是要使用Python连接数据库,还需要安装MySQLdb模块,安装方法也很简单:
sudo apt-get install MySQLdb
然后进入Python环境,import这个包,如果没有报错,则安装成功了:
python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import MySQLdb
>>>
Python标准的数据库接口的Python DB-API(包括Python操作MySQL)。大多数Python数据库接口坚持这个标准。不同的数据库也就需要不同额模块,由于我本机装的是MySQL,所以使用了MySQLdb模块,对不同的数据库而言,只需要更改底层实现了接口的模块,代码不需要改,这就是模块的作用。
Python数据库操作
首先我们需要一个测试表
建表语句:
CREATE DATABASE study;
use study;
DROP TABLE IF EXISTS python_demo;
CREATE TABLE python_demo (
id int NOT NULL AUTO_INCREMENT COMMENT '主键,自增',
user_no int NOT NULL COMMENT '用户编号',
user_name VARBINARY(50) NOT NULL COMMENT '用户名',
password VARBINARY(50) NOT NULL COMMENT '用户密码',
remark VARBINARY(255) NOT NULL COMMENT '用户备注',
PRIMARY KEY (id,user_no)
)ENGINE =innodb DEFAULT CHARSET = utf8 COMMENT '用户测试表';
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1001,'张三01','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1002,'张三02','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1003,'张三03','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1004,'张三04','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1005,'张三05','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1006,'张三06','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1007,'张三07','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1008,'张三08','admin','我是张三');
Python代码
# --coding=utf8--
import ConfigParser
import sys
import MySQLdb
def init_db():
try:
conn = MySQLdb.connect(host=conf.get('Database', 'host'),
user=conf.get('Database', 'user'),
passwd=conf.get('Database', 'passwd'),
db=conf.get('Database', 'db'),
charset='utf8')
return conn
except:
print "Error:数据库连接错误"
return None
def select_demo(conn, sql):
try:
cursor = conn.cursor()
cursor.execute(sql)
return cursor.fetchall()
except:
print "Error:数据库连接错误"
return None
def update_demo():
pass
def delete_demo():
pass
def insert_demo():
pass
if __name__ == '__main__':
conf = ConfigParser.ConfigParser()
conf.read('mysql.conf')
conn = init_db()
sql = "select * from %s" % conf.get('Database', 'table')
data = select_demo(conn, sql)
pass
fetchall()字段特殊字符过滤处理
最近在做数据仓库的迁移工作,之前数据仓库的数据都是用的shell脚本来抽取,后来换了python脚本.
但是在把数据抽取存放到hadoop时,出现了一个问题:
由于数据库字段很多,提前也不知道数据库字段会存储什么内容,hive建表是以\t\n做分隔,这就导致了一个问题,如果mysql字段内容里面本身含有\t\n,那么就会出现字段错位情况,并且很头疼的是mysql有100多个字段,也不知道哪个字段会出现这个问题.
shell脚本里的做法是在需要抽取的字段上用mysql的replace函数对字段进行替换,例如,假设mysql里的字段是column1 varchar(2000),那么很可能就会出现有特殊字符的情况,在查询的sql语句里加上
select replace(replace(replace(column1,'\r',''),'\n',''),'\t','')
之前一直是这么干的,但是这样写sql特别长,特别是有100多个字段,也不知道哪个有特殊字符,只要都加上.
所以在python中对字段不加处理,最终导致hive表字段对应出现偏差,所以在python里从mysql查询到的字段在写到文件之前需要对每个字段进行过滤处理
看个例子,我就以mysql测试为例,首先建一张测试表
CREATE TABLE `filter_fields` (
`field1` varchar(50) DEFAULT NULL,
`field2` varchar(50) DEFAULT NULL,
`field3` varchar(50) DEFAULT NULL,
`field4` varchar(50) DEFAULT NULL,
`field5` varchar(50) DEFAULT NULL,
`field6` varchar(50) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
有六个字段,都是varchar类型,插入新数据可以在里面插入特殊字符.简单插入条数据测试看看:
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test01','test02','test03','test04','test05','test06');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test11\ntest11','test12\n\n','test13','test14','test15','test16');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test21\ttest21','test22\ttest22\ttest22','test23\t\t\t','test4','test5','test6');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test21\rest21','test22\r\rest22\r\rest22','test23\r\r\r','test4','test5','test6');
其中数据里插入的特殊字符,可能连在一起,也有不连在一起的.
python测试代码:
# coding=utf-8
import MySQLdb
import sys
db_host = '127.0.0.1' # 数据库地址
db_port = 3306 # 数据库端口
db_user = 'root' # mysql用户名
db_pwd = 'yourpassword' # mysql用户密码,换成你的密码
db_name = 'test' # 数据库名
db_table = 'filter_fields' # 数据库表
# 过滤sql字段结果中的\t\n
def extract_data(table_name):
try:
conn = MySQLdb.connect(host=db_host, port = db_port, user=db_user,
passwd = db_pwd, db = db_name, charset = "utf8")
cursor = conn.cursor()
except MySQLdb.Error, e:
print '数据库连接异常'
sys.exit(1)
try:
sql = 'select * from %s;'%(table_name)
cursor.execute(sql)
rows = cursor.fetchall()
print '====字段未过滤查询结果===='
for row in rows:
print row
print '====字段过滤之后结果===='
rows_list = []
for row in rows:
row_list = []
for column in row:
row_list.append(column.replace('\t', '').replace('\n', '').replace('\r', ''))
rows_list.append(row_list)
print rows_list[-1] # [-1]表示列表最后一个元素
return rows_list
except MySQLdb.Error, e:
print '执行sql语句失败'
cursor.close()
conn.close()
sys.exit(1)
if __name__ == '__main__':
print 'begin:'
rows = extract_data(db_table)
pass
看看输出结果:
字段未过滤查询结果
(u'test01', u'test02', u'test03', u'test04', u'test05', u'test06')
(u'test11\ntest11', u'test12\n\n', u'test13', u'test14', u'test15', u'test16')
(u'test21\ttest21', u'test22\ttest22\ttest22', u'test23\t\t\t', u'test4', u'test5', u'test6')
(u'test21\rest21', u'test22\r\rest22\r\rest22', u'test23\r\r\r', u'test4', u'test5', u'test6')
字段过滤之后结果
[u'test01', u'test02', u'test03', u'test04', u'test05', u'test06']
[u'test11test11', u'test12', u'test13', u'test14', u'test15', u'test16']
[u'test21test21', u'test22test22test22', u'test23', u'test4', u'test5', u'test6']
[u'test21est21', u'test22est22est22', u'test23', u'test4', u'test5', u'test6']
可以看到,制表符,换行符,回车都被过滤了.
建议:最后说点题外话,不要小视\r,回车符.很多人以为回车符就是换行符,其实不是的,\r表示回车符,\n表示新行.之前代码里其实是过滤掉了\t\n的,但是抽取的数据还是不对,后来看了源码之后才发现,原来是没有过滤\r,就这个不同导致了很多数据抽取不对.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09