写量化策略时常用的技巧
1.善用panel保存数据
说明:pandas有三种数据结构,分别是Series(一维),DataFrame(二维),panel(三维)
例子:沪深300成分股所有股票[stock list]在某些特征指标如成交量、收盘价[indicator list]上的某时间区间内的历史序列[time series],
[stock list] * [indicator list] * [time series]=3维
Q:如何通过Windpy接口来形成我们的三维面板数据呢?
A:按个股循环,获取每只股票的序列数据(二维);再把300只个股合并成三维。
例代码1:获取面板原始数据(daily),后期再在这张大的面板数据上计算月度的情况,再排序形成组合。再形成一个新的面板。【思路:总-分-总】
ps1:缺点就是从总表中拆开按每个因子形成月度收益再concat合并,这个过程很麻烦,不如一开始就按因子分开处理好,再合并形成面板数据。
ps2:wind API每天12000条左右的记录限制,意味着300只股票,每天只能他爸爸的获取30天的数据,10年的数据(120个月)得花120天来下载,这很坑啊。。。肯定是要另外想办法的,平时写策略主要目的是训练思路和练手,对数据质量要求不太高,目前看来,聚宽是最好的选择,策略编写平台类似jupyter notebook,也支持python的所有package。
import pandas as pd
import copy
from WindPy import w
import datetime
w.start()
## 函数getAsharePanels(),获取A股历史面板数据
def getAsharePanels(stockcodes,start_date,end_date):
append_data=pd.DataFrame(columns=['trade_date','stock_code','open','high','low','close','volume']) #产生一个辅助数据集,帮助后面循环时汇总
individual_data=pd.DataFrame() #存放个股交易信息的数据集
result={} #result是一个三维的字典
for individual_stockcode in stockcodes:
# 依次生成个股数据集(变量包括:日期、代码、开盘价、最高价、最低价、收盘价、成交量)
stock=w.wsd(individual_stockcode, "trade_code,open,high,low,close,volume",start_date,end_date)
individual_data['trade_date']=stock.Times
individual_data['stock_code']=stock.Data[0]
individual_data['open']=stock.Data[1]
individual_data['high']=stock.Data[2]
individual_data['low']=stock.Data[3]
individual_data['close']=stock.Data[4]
individual_data['volume']=stock.Data[5]
# 通过300次迭代,把300只股票的df格式的individual_data数据放到result里,形成3维的字典
result[+1]=individual_data
rawdata = pd.Panel(result) #获取的沪深300成分股的3维数据保存在rawdata中
return rawdata
## 调用函数getAsharePanels(),获取A股历史面板数据
todayDate=datetime.datetime.strftime(datetime.date.today(),"%Y%m%d")
wsetdata=w.wset('SectorConstituent','date='+todayDate+';sectorId=1000000090000000;field=wind_code') #通过wset获取沪深300成分股代码
stockcodes=list(wsetdata.Data[0])
start_date='20120101' #样本数据起始日期
end_date='20171231' #样本数据结束日期
rawdata_panel=getAsharePanels(stockcodes,start_date,end_date)
例代码2:
【先分后合】
step1:
一维:先写好一系列函数,分开处理好各因子的历史序列数据(如:月度收益、排序形成portfolio等)
step2:写个两层的循环,把一维变成二维,再变成三维
二维(内层循环):再把一维按照因子类别作为二维的dataframe的列,以此思路来形成二维表,如:df[‘PE’]=seriesXXX
三维(外层循环):按monthly的时间来循环,把二维的截面数据加上时间维度,变成三维的,形成一张panel
Q:分开处理好数据以后,如何形成我们的三维面板数据呢?
A:最外层循环:按时间(换仓频率一般是月度)
最内层循环:调用windpy接口获取每只股票的所有因子的截面数据,按股票代码循环(成交等、价格等)
## 函数1:计算组合的月度收益率
def caculate_port_monthly_return(port,startdate,enddate,nextdate,CMV):
close1 = get_price(port, startdate, enddate, 'daily', ['close']) #三维面板数据
close2 = get_price(port, enddate, nextdate, 'daily',['close']) #面板数据
weighted_m_return = ((close2['close'].ix[0,:]/close1['close'].ix[0,:]-1)).mean() #等权加权
return weighted_m_return
## 函数2:计算benchmark组合的月度收益
def caculate_benchmark_monthly_return(startdate,enddate,nextdate):
close1 = get_price(['000001.XSHG'],startdate,enddate,'daily',['close'])['close']
#二维
close2 = get_price(['000001.XSHG'],enddate, nextdate, 'daily',['close'])['close']
benchmark_return = (close2.ix[0,:]/close1.ix[0,:]-1).sum()
print close1
return benchmark_return
## 核心策略:构建因子组合并计算每月换仓时不同组合的月收益率
# 得到结果monthly_return为panel数据,储存所有因子,在7×12个月内5个组合及benchmark的月收益率
factors = ['B/M','EPS','PEG','ROE','ROA','GP/R','P/R','L/A','FAP','CMV']
#因为研究模块取fundmental数据默认date为研究日期的前一天。所以要自备时间序列。按月取
year = ['2011','2012','2013','2014','2015','2016','2017']
month = ['01','02','03','04','05','06','07','08','09','10','11','12']
result = {}
for i in range(7*12):
startdate = year[i/12] + '-' + month[i%12] + '-01'
try:
enddate = year[(i+1)/12] + '-' + month[(i+1)%12] + '-01'
except IndexError:
enddate = '2016-01-01'
try:
nextdate = year[(i+2)/12] + '-' + month[(i+2)%12] + '-01'
except IndexError:
if enddate == '2018-01-01':
nextdate = '2018-02-01'
else:
nextdate = '2018-01-01'
#print 'time %s'%startdate
fdf = get_factors(startdate,factors)
CMV = fdf['CMV']
#5个组合,10个因子
df = DataFrame(np.zeros(6*10).reshape(6,10),index = ['port1','port2','port3','port4','port5','benchmark'],columns = factors)
for fac in factors:
score = fdf[fac].order()
port1 = list(score.index)[: len(score)/5]
port2 = list(score.index)[ len(score)/5+1: 2*len(score)/5]
port3 = list(score.index)[ 2*len(score)/5+1: -2*len(score)/5]
port4 = list(score.index)[ -2*len(score)/5+1: -len(score)/5]
port5 = list(score.index)[ -len(score)/5+1: ]
df.ix['port1',fac] = caculate_port_monthly_return(port1,startdate,enddate,nextdate,CMV)
df.ix['port2',fac] = caculate_port_monthly_return(port2,startdate,enddate,nextdate,CMV)
df.ix['port3',fac] = caculate_port_monthly_return(port3,startdate,enddate,nextdate,CMV)
df.ix['port4',fac] = caculate_port_monthly_return(port4,startdate,enddate,nextdate,CMV)
df.ix['port5',fac] = caculate_port_monthly_return(port5,startdate,enddate,nextdate,CMV)
df.ix['benchmark',fac] = caculate_benchmark_monthly_return(startdate,enddate,nextdate)
#print 'factor %s'%faesult[i+1]=df
monthly_return = pd.Panel(result)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10