写量化策略时常用的技巧
1.善用panel保存数据
说明:pandas有三种数据结构,分别是Series(一维),DataFrame(二维),panel(三维)
例子:沪深300成分股所有股票[stock list]在某些特征指标如成交量、收盘价[indicator list]上的某时间区间内的历史序列[time series],
[stock list] * [indicator list] * [time series]=3维
Q:如何通过Windpy接口来形成我们的三维面板数据呢?
A:按个股循环,获取每只股票的序列数据(二维);再把300只个股合并成三维。
例代码1:获取面板原始数据(daily),后期再在这张大的面板数据上计算月度的情况,再排序形成组合。再形成一个新的面板。【思路:总-分-总】
ps1:缺点就是从总表中拆开按每个因子形成月度收益再concat合并,这个过程很麻烦,不如一开始就按因子分开处理好,再合并形成面板数据。
ps2:wind API每天12000条左右的记录限制,意味着300只股票,每天只能他爸爸的获取30天的数据,10年的数据(120个月)得花120天来下载,这很坑啊。。。肯定是要另外想办法的,平时写策略主要目的是训练思路和练手,对数据质量要求不太高,目前看来,聚宽是最好的选择,策略编写平台类似jupyter notebook,也支持python的所有package。
import pandas as pd
import copy
from WindPy import w
import datetime
w.start()
## 函数getAsharePanels(),获取A股历史面板数据
def getAsharePanels(stockcodes,start_date,end_date):
append_data=pd.DataFrame(columns=['trade_date','stock_code','open','high','low','close','volume']) #产生一个辅助数据集,帮助后面循环时汇总
individual_data=pd.DataFrame() #存放个股交易信息的数据集
result={} #result是一个三维的字典
for individual_stockcode in stockcodes:
# 依次生成个股数据集(变量包括:日期、代码、开盘价、最高价、最低价、收盘价、成交量)
stock=w.wsd(individual_stockcode, "trade_code,open,high,low,close,volume",start_date,end_date)
individual_data['trade_date']=stock.Times
individual_data['stock_code']=stock.Data[0]
individual_data['open']=stock.Data[1]
individual_data['high']=stock.Data[2]
individual_data['low']=stock.Data[3]
individual_data['close']=stock.Data[4]
individual_data['volume']=stock.Data[5]
# 通过300次迭代,把300只股票的df格式的individual_data数据放到result里,形成3维的字典
result[+1]=individual_data
rawdata = pd.Panel(result) #获取的沪深300成分股的3维数据保存在rawdata中
return rawdata
## 调用函数getAsharePanels(),获取A股历史面板数据
todayDate=datetime.datetime.strftime(datetime.date.today(),"%Y%m%d")
wsetdata=w.wset('SectorConstituent','date='+todayDate+';sectorId=1000000090000000;field=wind_code') #通过wset获取沪深300成分股代码
stockcodes=list(wsetdata.Data[0])
start_date='20120101' #样本数据起始日期
end_date='20171231' #样本数据结束日期
rawdata_panel=getAsharePanels(stockcodes,start_date,end_date)
例代码2:
【先分后合】
step1:
一维:先写好一系列函数,分开处理好各因子的历史序列数据(如:月度收益、排序形成portfolio等)
step2:写个两层的循环,把一维变成二维,再变成三维
二维(内层循环):再把一维按照因子类别作为二维的dataframe的列,以此思路来形成二维表,如:df[‘PE’]=seriesXXX
三维(外层循环):按monthly的时间来循环,把二维的截面数据加上时间维度,变成三维的,形成一张panel
Q:分开处理好数据以后,如何形成我们的三维面板数据呢?
A:最外层循环:按时间(换仓频率一般是月度)
最内层循环:调用windpy接口获取每只股票的所有因子的截面数据,按股票代码循环(成交等、价格等)
## 函数1:计算组合的月度收益率
def caculate_port_monthly_return(port,startdate,enddate,nextdate,CMV):
close1 = get_price(port, startdate, enddate, 'daily', ['close']) #三维面板数据
close2 = get_price(port, enddate, nextdate, 'daily',['close']) #面板数据
weighted_m_return = ((close2['close'].ix[0,:]/close1['close'].ix[0,:]-1)).mean() #等权加权
return weighted_m_return
## 函数2:计算benchmark组合的月度收益
def caculate_benchmark_monthly_return(startdate,enddate,nextdate):
close1 = get_price(['000001.XSHG'],startdate,enddate,'daily',['close'])['close']
#二维
close2 = get_price(['000001.XSHG'],enddate, nextdate, 'daily',['close'])['close']
benchmark_return = (close2.ix[0,:]/close1.ix[0,:]-1).sum()
print close1
return benchmark_return
## 核心策略:构建因子组合并计算每月换仓时不同组合的月收益率
# 得到结果monthly_return为panel数据,储存所有因子,在7×12个月内5个组合及benchmark的月收益率
factors = ['B/M','EPS','PEG','ROE','ROA','GP/R','P/R','L/A','FAP','CMV']
#因为研究模块取fundmental数据默认date为研究日期的前一天。所以要自备时间序列。按月取
year = ['2011','2012','2013','2014','2015','2016','2017']
month = ['01','02','03','04','05','06','07','08','09','10','11','12']
result = {}
for i in range(7*12):
startdate = year[i/12] + '-' + month[i%12] + '-01'
try:
enddate = year[(i+1)/12] + '-' + month[(i+1)%12] + '-01'
except IndexError:
enddate = '2016-01-01'
try:
nextdate = year[(i+2)/12] + '-' + month[(i+2)%12] + '-01'
except IndexError:
if enddate == '2018-01-01':
nextdate = '2018-02-01'
else:
nextdate = '2018-01-01'
#print 'time %s'%startdate
fdf = get_factors(startdate,factors)
CMV = fdf['CMV']
#5个组合,10个因子
df = DataFrame(np.zeros(6*10).reshape(6,10),index = ['port1','port2','port3','port4','port5','benchmark'],columns = factors)
for fac in factors:
score = fdf[fac].order()
port1 = list(score.index)[: len(score)/5]
port2 = list(score.index)[ len(score)/5+1: 2*len(score)/5]
port3 = list(score.index)[ 2*len(score)/5+1: -2*len(score)/5]
port4 = list(score.index)[ -2*len(score)/5+1: -len(score)/5]
port5 = list(score.index)[ -len(score)/5+1: ]
df.ix['port1',fac] = caculate_port_monthly_return(port1,startdate,enddate,nextdate,CMV)
df.ix['port2',fac] = caculate_port_monthly_return(port2,startdate,enddate,nextdate,CMV)
df.ix['port3',fac] = caculate_port_monthly_return(port3,startdate,enddate,nextdate,CMV)
df.ix['port4',fac] = caculate_port_monthly_return(port4,startdate,enddate,nextdate,CMV)
df.ix['port5',fac] = caculate_port_monthly_return(port5,startdate,enddate,nextdate,CMV)
df.ix['benchmark',fac] = caculate_benchmark_monthly_return(startdate,enddate,nextdate)
#print 'factor %s'%faesult[i+1]=df
monthly_return = pd.Panel(result)
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16