Stata实用计量方法_18小时在线学习
我们以介绍当代实用计量方法为主,Stata 操作为辅,而以发表 (C)SSCI 论文为目标。让您可以复制成功发表的经验。
来参加讲习的目的是要撰写论文(硕、博士或老师要发表学术论文,以国内较好期刊或国外之SSCI为目标),当中一个重要环节就是实证 (计量) 方法,这是讲习之重点,而Stata是执行实证方法最方便的软件,所以课程以
以多年发表 SSCI学术文章之实战功力与经验传承,特别讲求实务应用,摒除课本没有实用之内容,精简介绍学术论文 (期刊) 所需要之计量方法与概念,让学员更容易了解相关概念、掌握重点并能正确应用于个人专业与领域。除此之外,藉由丰富的发表经验,也会穿插如何选择适当题目,让学员开始迈向 SSCI 之路。
培训时长:18小时
培训方式:在线学习,提供全部资料和黄老师答疑
培训费用:3600元 /3200元(学生价, 仅限全日制在读本科生和硕士)
授课安排:上午9:00-12:00; 下午1:30-4:30; 答疑4:30-5:00
在线报名:http://www.peixun.net/main.php?mod=buy&cid=1377
课程教材:
PPT,Stata 程序与相关资料。
课程简介:
1. 前两讲内容(论 t 值与面板模型) 是一个硕、博班学生,甚至年轻老师从事应用计量之最基本、也是最重要的基础。我以多年研究经验,帮你筛选掉没有实用的部分,将你应该知道教给你,让你能够真正自己操作、应用而不会受到别人 (例如审稿人) 之挑战。
2. 论文知道无他,求其 t 值而已矣!但你的 t 值对吗?此外,经济、财务与其他非常多领域有超过一大半是使用面板资料,所以了解其之估计方法 (你还在纠结于固定或随机效果吗?双向固定效果模型若不显著应该如何) 与如何操作和注意事项,让你有明确方向与做法!
3. 后面四讲内容 (倍差法 DID,倾向得分匹配分析 PSM,合成控制法 SCM与断点回归设计 RDD)都是分析政策效果 (不仅局限于政府,也包括其他公司与个人之许多决策) 之因果效应 (causal effects),不管学术或是实务,这几个方法都是必备之计量分析技术。
4. 首先,DID与PSM 在实务应用上是非常相关的,当你想分析某一政策 (也包括法律、制度等) 改变或执行之效果,到底适合用哪一种方式 (正常是两者之一)?DID/PSM 之使用 (与合用) 可说是最广泛的,他们都适用于有"多个”受到政策影响之治疗组,但若只有”一个”受到影响,这时候我门可考虑使用近15年政策评估最大之进展 --- SCM方法来估计政策之因果效应。除了一般的”孤伶伶”情况,我也将介绍”多个”受影响之 SCM 應用與操作。至于RDD之应用,多因为政策执行适用符合某一门槛值之上 (或之下) 所造成,是大家公认最clean的认定政策效果之方法,你也应该要知道!
讲师介绍:
黄河泉,美国范德堡大学 (Vanderbilt University) 经济学博士,目前为淡江大学财务金融学系专任教授。主要教授课程包括计量经济学与高等应用计量等课程。主要研究方向为应用计量经济,应用方面主要为宏观财务经济,这几年逐渐转往财务金融 (公司治理与公司理财) 方面之应用,以中国为主要分析对象。已经于 Journal of Development Economics, Journal of International Moneyand Finance (forthcoming), Journal of Empirical Finance (2篇), Economics Letters, Journal of Comparative Economics, Journal ofMacroeconomics, International Review of Economics and Finance, Studies inNonlinear Dynamics and Econometrics, Economic Modelling 等国际知名期刊发表超过 50 篇之学术论文 (其中有超过 40篇收录于 SSCI 期刊)。
课程大纲:
I. 基础计量
a. 论t 值 (OLS/IV)
1. 外生 (OLS)与内生(IV/2SLS) 解释变量之问题 (t 值之分子问题)
2. 稳健标准误:异方差、序列相关与聚类等处理(t 值之分母问题)
3. SSCI 时间:范文多篇
b. 面板模型(PD, panel data model)
1. 介绍固定效果 (FE) 与随机效果 (RE) 模型与估计
2. 模型筛选:要用 FE 或 RE? 同方差与异方差下之检定
3. 实战一二三:这些年期刊文章的真相 (firm,industry, and year fixed effects 与 robust orcluster at firm/industry/year level)
4. SSCI 时间:范文多篇
II. 衡量政策效果之实用计量:
a. 倍差法(DID, difference-in-differences)
1. 政策改变时点相同之状况
2. 政策改变时点不同之状况
3. 亮点:简单检验平行趋势之操作
4. SSCI 时间:范文多篇
b. 倾向得分匹配分析 (PSM, propensity score matching)
1. 配对之概念与依据,不同配对之方法
2. 亮点:可能更好之配对新方法:EB(entropy balancing) 与 CEM (coarsened exact matching) 等
3. 亮点:与DID合用,与分位数回归合用
4. 亮点:正向/负向选择假说之验证(对文章内容有加分作用)。
5. SSCI时间:范文多篇
c. 合成控制法(SCM, synthetic control method)
1. 特别合适衡量单一个体/地区 (治疗组) 受到政策影响之效果
2. 亮点:将其延伸到多个个体/地区(治疗组) 之情况
3. SSCI时间:范文多篇
d. 断点回归设计(RDD, regression discontinuity design)
1. 明确断点回归设计 (Sharp RDD)
2. 模糊断点回归设计 (Fuzzy RDD)
3. SSCI时间:范文多篇
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
同一单位六人以上同时报名8折优惠;
以上优惠与学生价不叠加。
报名流程:
1,点击“http://www.peixun.net/main.php?mod=buy&cid=1377”,在线提交报名信息;
2,订单支付成功后发送发票信息;
3,开课前一周发送电子版资料与上课事宜。
在线咨询:
尹老师
电话:010-53352991
QQ:42884447
WeChat:yinyinan888
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14