
使用R语言绘制其他图形之相关系数图
虽然cor()函数可以非常方便快捷的计算出连续变量之间的相关系数,但当变量非常多时,返回的相关系数一定时读者看的眼花缭乱。
下面就以R自带的mtcars数据集为例,讲讲相关系数图的绘制:
cor(mtcars[1:7])
很显然,这么多数字堆在一起肯定很难快速的发现变量之间的相关性大小,如果可以将相关系数可视化,就能弥补一大堆数字的缺陷了。这里介绍corrplot包中的corrplot()函数进行相关系数的可视化,首先来看看该函数的语法和一些重要参数:
corrplot(corr,
method = c("circle", "square", "ellipse", "number", "shade", "color", "pie"),
type = c("full", "lower", "upper"), add = FALSE,
col = NULL, bg = "white", title = "", is.corr = TRUE,
diag = TRUE, outline = FALSE, mar = c(0,0,0,0),
addgrid.col = NULL, addCoef.col = NULL, addCoefasPercent = FALSE,
order = c("original", "AOE", "FPC", "hclust", "alphabet"),
hclust.method = c("complete", "ward", "single", "average",
"mcquitty", "median", "centroid"),
addrect = NULL, rect.col = "black", rect.lwd = 2,
tl.pos = NULL, tl.cex = 1,
tl.col = "red", tl.offset = 0.4, tl.srt = 90,
cl.pos = NULL, cl.lim = NULL,
cl.length = NULL, cl.cex = 0.8, cl.ratio = 0.15,
cl.align.text = "c",cl.offset = 0.5,
addshade = c("negative", "positive", "all"),
shade.lwd = 1, shade.col = "white",
p.mat = NULL, sig.level = 0.05,
insig = c("pch","p-value","blank", "n"),
pch = 4, pch.col = "black", pch.cex = 3,
plotCI = c("n","square", "circle", "rect"),
lowCI.mat = NULL, uppCI.mat = NULL, ...)
corr:需要可视化的相关系数矩阵
method:指定可视化的方法,可以是圆形、方形、椭圆形、数值、阴影、颜色或饼图形
type:指定展示的方式,可以是完全的、下三角或上三角
col:指定图形展示的颜色,默认以均匀的颜色展示
bg:指定图的背景色
title:为图形添加标题
is.corr:是否为相关系数绘图,默认为TRUE,同样也可以实现非相关系数的可视化,只需使该参数设为FALSE即可
diag:是否展示对角线上的结果,默认为TRUE
outline:是否绘制圆形、方形或椭圆形的轮廓,默认为FALSE
mar:具体设置图形的四边间距
addgrid.col:当选择的方法为颜色或阴影时,默认的网格线颜色为白色,否则为灰色
addCoef.col:为相关系数添加颜色,默认不添加相关系数,只有方法为number时,该参数才起作用
addCoefasPercent:为节省绘图空间,是否将相关系数转换为百分比格式,默认为FALSE
order:指定相关系数排序的方法,可以是原始顺序(original)、特征向量角序(AOE)、第一主成分顺序(FPC)、层次聚类顺序(hclust)和字母顺序,一般”AOE”排序结果都比”FPC”要好
hclust.method:当order为hclust时,该参数可以是层次聚类中ward法、最大距离法等7种之一
addrect:当order为hclust时,可以为添加相关系数图添加矩形框,默认不添加框,如果想添加框时,只需为该参数指定一个整数即可
rect.col:指定矩形框的颜色
rect.lwd:指定矩形框的线宽
tl.pos:指定文本标签(变量名称)的位置,当type=full时,默认标签位置在左边和顶部(lt),当type=lower时,默认标签在左边和对角线(ld),当type=upper时,默认标签在顶部和对角线,d表示对角线,n表示不添加文本标签
tl.cex:指定文本标签的大小
tl.col:指定文本标签的颜色
cl.pos:图例(颜色)位置,当type=upper或full时,图例在右表(r),当type=lower时,图例在底部,不需要图例时,只需指定该参数为n
addshade:只有当method=shade时,该参数才有用,参数值可以是negtive/positive和all,分表表示对负相关系数、正相关系数和所有相关系数添加阴影。注意:正相关系数的阴影是45度,负相关系数的阴影是135度
shade.lwd:指定阴影的线宽
shade.col:指定阴影线的颜色
虽然该函数的参数比较多,但可以组合各种参数,灵活实现各种各样的相关系数图。下面就举几个例子:
library(corrplot)
corr <- cor(mtcars[,1:7])
#参数全部默认情况下的相关系数图
corrplot(corr = corr)
#指定数值方法的相关系数图
corrplot(corr = corr, method="number", col="black", cl.pos="n")
#按照特征向量角序(AOE)排序相关系数图
corrplot(corr = corr, order = 'AOE')
#同时添加相关系数值
corrplot(corr = corr, order ="AOE", addCoef.col="grey")
#选择方法为color
corrplot(corr = corr, method = 'color', order ="AOE", addCoef.col="grey")
我觉得这幅图比上面的圆形图要清爽很多
#绘制圆形轮廓相关系数图
corrplot(corr = corr, col = wb, order="AOE", outline=TRUE, cl.pos="n")
这个图看起来非常像围棋
#自定义背景色
corrplot(corr = corr, col = wb, bg="gold2", order="AOE", cl.pos="n")
#混合方法之上三角为圆形,下三角为数字
corrplot(corr = corr,order="AOE",type="upper",tl.pos="d")
corrplot(corr = corr,add=TRUE, type="lower", method="number",order="AOE",diag=FALSE,tl.pos="n", cl.pos="n")
这幅图将颜色、圆的大小和数值型相关系数相结合,更容易发现变量之间的相关性
#混合方法之上三角为圆形,下三角为方形
corrplot(corr = corr,order="AOE",type="upper",tl.pos="d")
corrplot(corr = corr,add=TRUE, type="lower", method="square",order="AOE",diag=FALSE,tl.pos="n", cl.pos="n")
#混合方法之上三角为圆形,下三角为黑色数字
corrplot(corr = corr,order="AOE",type="upper",tl.pos="tp")
corrplot(corr = corr,add=TRUE, type="lower", method="number",order="AOE", col="black",diag=FALSE,tl.pos="n", cl.pos="n")
个人更倾向于上图的展现形式,既清爽又能很好的反映变量间的相关系数。
#以层次聚类法排序
corrplot(corr = corr, order="hclust")
#以层次聚类法排序,并绘制3个矩形框
corrplot(corr = corr, order="hclust", addrect = 3, rect.col = "black")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
全球第一!上交AI智能体炼成Kaggle特级大师登顶OpenAI MLE-bench 编辑:KingHZ 好困 【新智元导读】刚刚,由上海交通大学人 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24