使用R语言绘制其他图形之相关系数图
虽然cor()函数可以非常方便快捷的计算出连续变量之间的相关系数,但当变量非常多时,返回的相关系数一定时读者看的眼花缭乱。
下面就以R自带的mtcars数据集为例,讲讲相关系数图的绘制:
cor(mtcars[1:7])
很显然,这么多数字堆在一起肯定很难快速的发现变量之间的相关性大小,如果可以将相关系数可视化,就能弥补一大堆数字的缺陷了。这里介绍corrplot包中的corrplot()函数进行相关系数的可视化,首先来看看该函数的语法和一些重要参数:
corrplot(corr,
method = c("circle", "square", "ellipse", "number", "shade", "color", "pie"),
type = c("full", "lower", "upper"), add = FALSE,
col = NULL, bg = "white", title = "", is.corr = TRUE,
diag = TRUE, outline = FALSE, mar = c(0,0,0,0),
addgrid.col = NULL, addCoef.col = NULL, addCoefasPercent = FALSE,
order = c("original", "AOE", "FPC", "hclust", "alphabet"),
hclust.method = c("complete", "ward", "single", "average",
"mcquitty", "median", "centroid"),
addrect = NULL, rect.col = "black", rect.lwd = 2,
tl.pos = NULL, tl.cex = 1,
tl.col = "red", tl.offset = 0.4, tl.srt = 90,
cl.pos = NULL, cl.lim = NULL,
cl.length = NULL, cl.cex = 0.8, cl.ratio = 0.15,
cl.align.text = "c",cl.offset = 0.5,
addshade = c("negative", "positive", "all"),
shade.lwd = 1, shade.col = "white",
p.mat = NULL, sig.level = 0.05,
insig = c("pch","p-value","blank", "n"),
pch = 4, pch.col = "black", pch.cex = 3,
plotCI = c("n","square", "circle", "rect"),
lowCI.mat = NULL, uppCI.mat = NULL, ...)
corr:需要可视化的相关系数矩阵
method:指定可视化的方法,可以是圆形、方形、椭圆形、数值、阴影、颜色或饼图形
type:指定展示的方式,可以是完全的、下三角或上三角
col:指定图形展示的颜色,默认以均匀的颜色展示
bg:指定图的背景色
title:为图形添加标题
is.corr:是否为相关系数绘图,默认为TRUE,同样也可以实现非相关系数的可视化,只需使该参数设为FALSE即可
diag:是否展示对角线上的结果,默认为TRUE
outline:是否绘制圆形、方形或椭圆形的轮廓,默认为FALSE
mar:具体设置图形的四边间距
addgrid.col:当选择的方法为颜色或阴影时,默认的网格线颜色为白色,否则为灰色
addCoef.col:为相关系数添加颜色,默认不添加相关系数,只有方法为number时,该参数才起作用
addCoefasPercent:为节省绘图空间,是否将相关系数转换为百分比格式,默认为FALSE
order:指定相关系数排序的方法,可以是原始顺序(original)、特征向量角序(AOE)、第一主成分顺序(FPC)、层次聚类顺序(hclust)和字母顺序,一般”AOE”排序结果都比”FPC”要好
hclust.method:当order为hclust时,该参数可以是层次聚类中ward法、最大距离法等7种之一
addrect:当order为hclust时,可以为添加相关系数图添加矩形框,默认不添加框,如果想添加框时,只需为该参数指定一个整数即可
rect.col:指定矩形框的颜色
rect.lwd:指定矩形框的线宽
tl.pos:指定文本标签(变量名称)的位置,当type=full时,默认标签位置在左边和顶部(lt),当type=lower时,默认标签在左边和对角线(ld),当type=upper时,默认标签在顶部和对角线,d表示对角线,n表示不添加文本标签
tl.cex:指定文本标签的大小
tl.col:指定文本标签的颜色
cl.pos:图例(颜色)位置,当type=upper或full时,图例在右表(r),当type=lower时,图例在底部,不需要图例时,只需指定该参数为n
addshade:只有当method=shade时,该参数才有用,参数值可以是negtive/positive和all,分表表示对负相关系数、正相关系数和所有相关系数添加阴影。注意:正相关系数的阴影是45度,负相关系数的阴影是135度
shade.lwd:指定阴影的线宽
shade.col:指定阴影线的颜色
虽然该函数的参数比较多,但可以组合各种参数,灵活实现各种各样的相关系数图。下面就举几个例子:
library(corrplot)
corr <- cor(mtcars[,1:7])
#参数全部默认情况下的相关系数图
corrplot(corr = corr)
#指定数值方法的相关系数图
corrplot(corr = corr, method="number", col="black", cl.pos="n")
#按照特征向量角序(AOE)排序相关系数图
corrplot(corr = corr, order = 'AOE')
#同时添加相关系数值
corrplot(corr = corr, order ="AOE", addCoef.col="grey")
#选择方法为color
corrplot(corr = corr, method = 'color', order ="AOE", addCoef.col="grey")
我觉得这幅图比上面的圆形图要清爽很多
#绘制圆形轮廓相关系数图
corrplot(corr = corr, col = wb, order="AOE", outline=TRUE, cl.pos="n")
这个图看起来非常像围棋
#自定义背景色
corrplot(corr = corr, col = wb, bg="gold2", order="AOE", cl.pos="n")
#混合方法之上三角为圆形,下三角为数字
corrplot(corr = corr,order="AOE",type="upper",tl.pos="d")
corrplot(corr = corr,add=TRUE, type="lower", method="number",order="AOE",diag=FALSE,tl.pos="n", cl.pos="n")
这幅图将颜色、圆的大小和数值型相关系数相结合,更容易发现变量之间的相关性
#混合方法之上三角为圆形,下三角为方形
corrplot(corr = corr,order="AOE",type="upper",tl.pos="d")
corrplot(corr = corr,add=TRUE, type="lower", method="square",order="AOE",diag=FALSE,tl.pos="n", cl.pos="n")
#混合方法之上三角为圆形,下三角为黑色数字
corrplot(corr = corr,order="AOE",type="upper",tl.pos="tp")
corrplot(corr = corr,add=TRUE, type="lower", method="number",order="AOE", col="black",diag=FALSE,tl.pos="n", cl.pos="n")
个人更倾向于上图的展现形式,既清爽又能很好的反映变量间的相关系数。
#以层次聚类法排序
corrplot(corr = corr, order="hclust")
#以层次聚类法排序,并绘制3个矩形框
corrplot(corr = corr, order="hclust", addrect = 3, rect.col = "black")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12