Python中你应该知道的一些内置函数
python内置了一些非常巧妙而且强大的内置函数,对初学者来说,一般不怎么用到,我也是用了一段时间python之后才发现,哇还有这么好的函数,这个函数都是经典的而且经过严格测试的,可以一下子省了你原来很多事情,代码不仅简洁易读了很多,而且不用自己去闭门造车.既方便了自己又减少了bug。
一、sorted()
1)对于一个列表排序
sorted([100, 98, 102, 1, 40])
>>>[1, 40, 98, 100, 102]
2)通过key参数/函数
比如一个长列表里面嵌套了很多字典元素,我们要按照每个元素的长度大小排序
L = [{1:5,3:4},{1:3,6:3},{1:1,2:4,5:6},{1:9}]
new_line=sorted(L,key=lambda x:len(x))
print(new_line)
>>>[{1: 9}, {1: 5, 3: 4}, {1: 3, 6: 3}, {1: 1, 2: 4, 5: 6}]
3)对由tuple组成的List排序
比如下面是学生里面的年龄的一个list
students = [('wang', 'A', 15), ('li', 'B', 12), ('zhang', 'B', 10)]
print(sorted(students, key=lambda student : student[2]))
>>>[('zhang', 'B', 10), ('li', 'B', 12), ('wang', 'A', 15)]
4)用cmp函数排序
students = [('wang', 'A', 15), ('li', 'B', 12), ('zhang', 'B', 10)]
print(sorted(students, cmp=lambda x,y : cmp(x[0], y[0])) )
>>>[('li', 'B', 12), ('wang', 'A', 15), ('zhang', 'B', 10)]
其实对于python的排序要仔细讲,需要一整篇幅讲它的排序算法,内容非常多,感兴趣的可以去看一下源码,看它是如何设计的,这里只是先点一下.
二、map()
map可以根据提供的函数对指定序列做映射,它接受一个函数f和一个list,并通过把函数f以此作用在list上的每个元素,然后返回一个新的list,map函数的入参也可以是多个.注意这个函数一定要有返回值(值值值重要的说三遍)。
不然就会返回新的list 类似[None, None, None, None, None, None, None, None, None]
适合的场景是对列表里面的一些元素需要重复的操作,用map就可以轻松搞定.
三、enumerate()
Python中,迭代永远是取出元素本身,而非元素的索引,有的时候我们需要知道元素的索引比如在一个很长的列表里面是一些网站名,我们希望在打印的时候,也能列出索引。若没有这个函数,我们需要在加一个变量,在循环打印的时候让这个计数变量递增,现在有了enumerate,就不用这么麻烦了,直接搞定.
四、zip()
zip函数接受任意多个(包括0个和1个)序列作为参数,返回一个tuple列表
这个函数特别是在构建字典序列的时候非常方便 (这招非常巧妙,大家可以仔细揣摩)
五、filter()
filter函数接受一个函数f和一个list,这个函数f的作用是对每个元素进行判断,返回True或者False,这样可以过滤掉一些不符合条件的元素,然后返回符合条件的list.
特别是在处理文件的时候,需要把一些空格,回车和空字符去掉
六、reduce()
reduce函数的用法和map很类似,也是一个函数f和一个list,但是函数的入口参数一定要是两个,reduce也是对每个元素进行反复调用,最后返回最终的值,而map是返回一个list
注意:在python3里面reduce已经从全局函数里面移除了,需要用的话要from functools import reduce
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12