 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		前面介绍了基于训练集训练SVM的方法。通过训练,算法能找到使间隔区间最大化的最优平面来分割训练数据集,得到SVM模型能够被用来预测新到样例的类别。
	 
 
	准备
使用之前构建的churn构建的model.
操作
利用已构建的SVM模型和测试数据集的属性预测它的模型
svm.pred = predict(model,testset[,!names(testset) %in% c("churn")])
svm.table = table(svm.pred,testset$churn)
svm.table
svm.pred yes  no
     yes  70  12
     no   71 865
调用classAgreement计算分类一致性
classAgreement(svm.table)
$diag
[1] 0.9184676
$kappa
[1] 0.5855903
$rand
[1] 0.850083
$crand
[1] 0.5260472
调用confusionMatrix基于分类表评测预测性能
library(lattice)
library(ggplot2)
library(caret)
confusionMatrix(svm.table)
Confusion Matrix and Statistics
svm.pred yes  no
     yes  70  12
     no   71 865
               Accuracy : 0.9185          
                 95% CI : (0.8999, 0.9345)
    No Information Rate : 0.8615          
    P-Value [Acc > NIR] : 1.251e-08       
                  Kappa : 0.5856          
 Mcnemar's Test P-Value : 1.936e-10       
            Sensitivity : 0.49645         
            Specificity : 0.98632         
         Pos Pred Value : 0.85366         
         Neg Pred Value : 0.92415         
             Prevalence : 0.13851         
         Detection Rate : 0.06876         
   Detection Prevalence : 0.08055         
      Balanced Accuracy : 0.74139         
       'Positive' Class : yes             
说明
本节首先调用predict函数获得测试数据集的预测模型,然后用table函数产生测试数据集的分类表,接下来的性能评测过程与前述章节其他方法其他分类方法的评测类似。
引入了一个新的函数classAgreement用来计算一个二维列联表行列之间多种一致性关系数。
diag系数为分类表主对角性上数据点的百分比,kappa系数是对diag系数随机一致性的修正,rand代表聚类评价指标(rand index),主要用来横量两个聚簇之间的相似性,crand系数是出现元素随机分类情况对Rand index 修正结果。
SVM回归分析
还可以使用SVM预测连续变量,也就是使用SVM实现回归分析。在接下来的样例中,我们使用名为eps-regression模型说明如何使用SVM执行回归分析。
使用Quartet数据集来训练一个支持向量机:
library(car)
data(Quartet)
model.regression = svm(Quartet$y1~Quartet$x,type = "eps-regression")
使用predict函数得到预测结果
predict.y = predict(model.regression,Quartet$x)
predict.y
调用plot绘图函数,预测值用正方形,训练数据用圆形:
plot(Quartet$x,Quartet$y1,pch = 19)
points(Quartet$x,predict.y,pch = 15,col = "red")
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23