R语言建立VAR模型分析联合内生变量的动态关系
最近在写向量自回归的论文,无论是百度还是Google,都没能找到特别合适的R环境下中文资料,大都是Eviews做出来的。所以写这么一篇blog来分享下自己的经验。
注:本文着重介绍VAR的R实现,具体学术性质的东西请参阅相关学术论文。
VAR的定义:
自行Google,很详细,也很简单
VAR模型的用途:
主要是预测分析和内生变量间影响状况分析。
VAR的主要步骤:
(个人拙见,不是标准模板)
选择合适的变量
Granger因果检验,进一步观察变量间的关联性,最好做双向检验,不过也有人说单向就足够了,这就人之间人智者见智了
选择VAR模型滞后阶数
拟合VAR模型
诊断性检验:包括系统平稳性检验、正态性检验、序列相关误差等
脉冲响应分析
方差分解
预测分析
各个步骤在R中的实现方法:
R中有个叫“vars”的package,主要用来做向量自回归分析,所以先安装并加载该包:
install.packages(vars)
library(vars)
1.选择变量
根据理论分析选择出相关联的变量,不多说。
2.Granger因果检验
vars包里面有个专门做格兰杰因果检验的函数:
causality(x, cause = NULL, vcov.=NULL, boot=FALSE, boot.runs=100)
另外还有一个适用于普通线性回归模型的Granger test的函数:
grangertest(x, y, order = 1, na.action = na.omit, ...)
这两个函数最直接的区别在于,第二个不用拟合VAR模型即可使用,而第一个必须在拟合VAR模型之后使用。
3.选择合适的滞后阶数
没有一个定论,主要是通过不同信息准则选择出合适的结果,且最好选择最简阶数(也就是最低阶数)。
相关函数:
VARselect(y, lag.max = 10, type = c("const", "trend", "both", "none"),
season = NULL, exogen = NULL)
函数会return一个结果,分别是根据AIC、HQ、SC、FPE四个信息准则得出的最优阶数。
4.拟合VAR模型
var(x, y = NULL, na.rm = FALSE, use)
5.诊断性检验
也就是检验模型的有效性。
系统平稳性:
stability(x, type = c("OLS-CUSUM", "Rec-CUSUM", "Rec-MOSUM",
"OLS-MOSUM", "RE", "ME", "Score-CUSUM", "Score-MOSUM",
"fluctuation"), h = 0.15, dynamic = FALSE, rescale = TRUE)
这里使用“OLS-CUSUM”,它给出的是残差累积和,在该检验生成的曲线图中,残差累积和曲线以时间为横坐标,图中绘出两条临界线,如果累积和超出了这两条临界线,则说明参数不具有稳定性。
结果如下图:
说明系统稳定。
正态性检验:
normality.test(x, multivariate.only = TRUE)
序列相关误差检验:
serial.test(x, lags.pt = 16, lags.bg = 5, type = c("PT.asymptotic",
"PT.adjusted", "BG", "ES") )
6.脉冲响应分析
脉冲响应分析,直白的来说就是对于某一内生变量对于残差冲击的反应。具体而言,他描述的是在随机误差项上施加一个标准差大小的冲击后对内生变量的当期值和未来值所产生的影响。
irf(x, impulse = NULL, response = NULL, n.ahead = 10,
ortho = TRUE, cumulative = FALSE, boot = TRUE, ci = 0.95,
runs = 100, seed = NULL, ...)
示例:
var<-VAR(timeseries,lag.max=2)
var.irf<-irf(var)
plot(var.irf)
结果:
解读:
标题栏说明,这是Y_ln对各个变量(包括Y_ln自身)的脉冲响应(impulse response),其中可以看出来自Y_ln的正向冲击,来自FDI_ln的正向冲击、来自INDUSTRY_ln的冲击不断减小到负向。其余变量的冲击较小。
7.方差分解
VAR模型的应用,还可以采用方差分解方法研究模型的动态特征。方差分解是进一步评价各内生变量对预测方差的贡献度。方差分解是分析预测残差的标准差由不同新息的冲击影响的比例,亦即对应内生变量对标准差的贡献比例。
fevd(x, n.ahead=10, ...)
示例:
var<-VAR(timeseries,lag.max=2)
fevd1<-fevd(var, n.ahead = 5)$Y_ln
结果:
Y_ln REER_ln M0_ln CPI_ln RETAIL_ln FDI_ln INDUSTRY_ln
[1,] 1.0000000 0.000000000 0.0000000 0.00000000 0.00000000 0.00000000 0.00000000
[2,] 0.5660281 0.004363083 0.3085364 0.01686071 0.01356081 0.06509447 0.02555642
[3,] 0.5411924 0.009721985 0.2755711 0.01899613 0.07313395 0.05837871 0.02300568
[4,] 0.5259530 0.020262020 0.2783238 0.01870045 0.06689414 0.06883620 0.02103032
[5,] 0.5268243 0.036825419 0.2697744 0.01855353 0.06276992 0.06550223 0.01975014
解读:
例子中选取的是Y_ln变量的方差分解结果,如果不加‘$Y_ln’,则会return全部变量的结果。
最左边的是滞后期数,一共5期,结果表明当滞后期为1时,其自身对预测方差的贡献率为100%,用人话讲就是自身其变化。随着滞后期增加,Y_ln的贡献率下降,其他变量逐渐增加。不管怎么变化,每一行(也就是每一期)各个变量的贡献率之和都为1。
8.模型预测
没什么好说的,举例示之。
var.predict<-predict(var,n.ahead=3,ci=0.95)
var.predict
结果:
$Y_ln
fcst lower upper CI
[1,] 8.335729 8.208656 8.462802 0.1270727
[2,] 8.284560 8.076325 8.492795 0.2082349
[3,] 8.299723 8.078930 8.520516 0.2207930
fcst:点估计值
lower:区间估计下界
upper:区间估计上界
CI:置信区间
9.预测结果可视化
除了直接使用plot()函数绘图以外,vars包有一个fanchart()函数可以绘制扇形图,示意图:
总结:以上内容基本上实现了建立向量自回归模型,并进行分析所需的主要功能。至于更细分的点,就需要具体问题具体分析了。如文中有任何错误,请及时留言,谢谢
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13