使用R语言进行协整关系检验
协整检验是为了检验非平稳序列的因果关系,协整检验是解决伪回归为问题的重要方法。首先回归伪回归例子:
伪回归Spurious regression伪回归方程的拟合优度、显著性水平等指标都很好,但是其残差序列是一个非平稳序列,拟合一个伪回归:
#调用相关R包
library(lmtest)
library(tseries)
#模拟序列
set.seed(123456)
e1=rnorm(500)
e2=rnorm(500)
trd=1:500
y1=0.8*trd+cumsum(e1)
y2=0.6*trd+cumsum(e2)
sr.reg=lm(y1~y2)
#提取回归残差
error=residuals(sr.reg)
#作残差散点图
plot(error, main="Plot of error")
#对残差进行单位根检验
adf.test(error)
## Dickey-Fuller = -2.548, Lag order = 7, p-value = 0.3463
## alternative hypothesis: stationary
#伪回归结果,相关参数都显著
summary(sr.reg)
## Residuals:
## Min 1Q Median 3Q Max
## -30.654 -11.526 0.359 11.142 31.006
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -29.32697 1.36716 -21.4 <2e-16 ***
## y2 1.44079 0.00752 191.6 <2e-16 ***
## Residual standard error: 13.7 on 498 degrees of freedom
## Multiple R-squared: 0.987, Adjusted R-squared: 0.987
## F-statistic: 3.67e+04 on 1 and 498 DF, p-value: <2e-16
dwtest(sr.reg)
## DW = 0.0172, p-value < 2.2e-16
恩格尔-格兰杰检验Engle-Granger第一步:建立两变量(y1,y2)的回归方程,第二部:对该回归方程的残差(resid)进行单位根检验其中,原假设两变量不存在协整关系,备择假设是两变量存在协整关系。利用最小二乘法对回归方程进行估计,从回归方程中提取残差进行检验。
set.seed(123456)
e1=rnorm(100)
e2=rnorm(100)
y1=cumsum(e1)
y2=0.6*y1+e2
# (伪)回归模型
lr.reg=lm(y2~y1)
error=residuals(lr.reg)
adf.test(error)
## Dickey-Fuller = -3.988, Lag order = 4, p-value = 0.01262
## alternative hypothesis: stationary
error.lagged=error[-c(99,100)]
#建立误差修正模型ECM.REG
dy1=diff(y1)
dy2=diff(y2)
diff.dat=data.frame(embed(cbind(dy1, dy2),2))#emed表示嵌入时间序列dy1,dy2到diff.dat
colnames(diff.dat)=c("dy1","dy2","dy1.1","dy2.1")
ecm.reg=lm(dy2~error.lagged+dy1.1+dy2.1, data=diff.dat)
summary(ecm.reg)
## Residuals:
## Min 1Q Median 3Q Max
## -2.959 -0.544 0.137 0.711 2.307
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0034 0.1036 0.03 0.97
## error.lagged -0.9688 0.1585 -6.11 2.2e-08 ***
## dy1.1 0.8086 0.1120 7.22 1.4e-10 ***
## dy2.1 -1.0589 0.1084 -9.77 5.6e-16 ***
## Residual standard error: 1.03 on 94 degrees of freedom
## Multiple R-squared: 0.546, Adjusted R-squared: 0.532
## F-statistic: 37.7 on 3 and 94 DF, p-value: 4.24e-16
par(mfrow=c(2,2))
plot(ecm.reg)
Johansen-Juselius(JJ)协整检验法,该方法是一种用向量自回归(VAR)模型进行检验的方法,适用于对多重一阶单整I(1)序列进行协整检验。JJ检验有两种:特征值轨迹检验和最大特征值检验。我们可以调用urca包中的ca.jo命令完成这两种检验。其语法:
ca.jo(x, type = c("eigen", "trace"), ecdet = c("none", "const", "trend"), K = 2,spec=c("longrun", "transitory"), season = NULL, dumvar = NULL)
其中:x为矩阵形式数据框;type用来设置检验方法;ecdet用于设置模型形式:none表示不带截距项,const表示带常数截距项,trend表示带趋势项。K表示自回归序列的滞后阶数;spec表示向量误差修正模型反映的序列间的长期或短期关系;season表示季节效应;dumvar表示哑变量设置。
set.seed(12345)e1=rnorm(250,0,0.5)e2=rnorm(250,0,0.5)e3=rnorm(250,0,0.5)#模拟没有移动平均的向量自回归序列;u1.ar1=arima.sim(model=list(ar=0.75), innov=e1, n=250)u2.ar1=arima.sim(model=list(ar=0.3), innov=e2, n=250)y3=cumsum(e3)y1=0.8*y3+u1.ar1y2=-0.3*y3+u2.ar1#合并y1,y2,y3构成进行JJ检验的数据库;y.mat=data.frame(y1, y2, y3)#调用urca包中cajo命令对向量自回归序列进行JJ协整检验vecm=ca.jo(y.mat)jo.results=summary(vecm)#cajorls命令可以得到限制协整阶数的向量误差修正模型的最小二乘法回归结果vecm.r2=cajorls(vecm, r=2);vecm.r2## Call:lm(formula = substitute(form1), data = data.mat)## Coefficients:## y1.d y2.d y3.d## ect1 -0.33129 0.06461 0.01268## ect2 0.09447 -0.70938 -0.00916## constant 0.16837 -0.02702 0.02526## y1.dl1 -0.22768 0.02701 0.06816## y2.dl1 0.14445 -0.71561 0.04049## y3.dl1 0.12347 -0.29083 -0.07525## $beta## ect1 ect2## y1.l2 1.000e+00 0.0000## y2.l2 -3.402e-18 1.0000## y3.l2 -7.329e-01 0.2952
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21