不知道 AI 这三点优势,你可能真的要被淘汰
我们正处于飞速发展的数字化转型时期,这是由巨大的市场转变驱动的——即人工智能和机器学习。
同时,随着AI 和机器学习技术的普及,从中获益的不仅仅是大型企业。如今每个人都能利用AI和机器学习更高效地完成工作。
将 AI 用于工作场所
AI 给商业领域带来了深刻的改变,而且没有放缓的迹象。根据Adobe的研究“ 未来工作:不仅仅是机器 ”,美国超过四分之一的上班族认为,科技能让他们从无聊的任务中解放出来。
对人工智能的需求是显著的。有72%的上班族表示,他们对基于软件的智能个人助理感兴趣。同时就目前来说,他们更喜欢让AI帮助完成待办事项和预约提醒等简单任务,而不是复杂的任务。
在我看来,人工智能和机器学习的影响远不止如此。越来越多的组织机构用AI来处理尖端应用,当中AI至少有三个好处:降低成本;提高效率;推动重大突破。对于机构企业来说,这几点十分关键。同时这也在推动人工智能和机器学习的飞速发展。
1. 降低成本
我们可以把自动化视为完成重复性任务的利器。在商业初期,完成工作的唯一途径是通过人力。之后,机器开始将一些工作自动化。如今,机器学习能够将越来越多的脑力劳动自动化,让人们把宝贵的时间和才能应用于商业的其他领域。
如果任务能够分解为若干个子任务,并且这些子任务能够用更短的时间完成,那么在不久的将来这些任务就能用自动化完成。查看监控录像,检查医疗图像,识别图像中的特定内容,通过自动化!阅读文档,并在文档中查找相同的信息,通过自动化!
更多的让人从繁琐的任务中解放出来,我们就可以更多地激发人们的潜力,同时降低总体支出。如果自动化是现实的选择,那么企业领导者绝对应该接受它。
2. 提高效率
对于员工来说,高效率是十分重要的。有了效率的提高,你能够轻易做到事半功倍。
比如最普遍的AI用例:语音识别。如Siri和Alexa。近一半的美国人称,他们都有使用某种形式的语音识别,并且这些技术正在运用到工作中。Brooks Brothers、Mitsui USA、WeWork、Vonage和Capital One这几家公司已经开始在商业中使用Alexa。DXC.technology表示,一位专家设想,“将来办公室语音助手将在会议中使用语音生物认证,识别发言人身份,并进行会议录音和翻译。”
在许多商业用例中,这种语音助手并不会取代任何人的工作,只是为现有的工作增加价值并提高效率。
3. 推动重大突破
人工智能和机器学习能够帮助人们克服发展中盲点,从而推动重大突破。
在医学领域,这意味着能够分析患者风险,或将新的诊断产品推入市场。在制造业,这意味着能够在发生前对风险进行预测。
在商业领域,这意味着通过AI和机器学习,能够更深入的解读公司文件,并从中发现模式和趋势。
事实上,类似Adobe Document Cloud(包括Adobe Acrobat DC、Adobe Sign、Adobe Scan)的一些解决方案已经能使用语义分析技术,对单词、段落和列表进行分类,从而让人们更轻松、更快速地搜索相关内容。
突破意味着看到人们之前无法做到的事情,AI无疑能极大地推动突破创新。
下一步是什么
对于员工和企业而言,未来机器预计能够解放大量的劳动力。从而,我们能够把精力集中到只有人类才能执行的任务,以及企业想要执行的任务,从而推动行业的发展。
下一个问题是:你应该如何利用AI和机器学习的力量为企业助力?
很简单,先从数据开始。成功的AI和机器学习需要依赖于数据驱动的策略,如果没有足够的可操作数据就没有机器学习。许多领导者希望着手开展机器学习项目,却发现数据并不像预期中那样易于获取、易于理解和可用。
最终只有能获取数据的企业才能成为赢家。这些企业能够捕获实时数据并采取行动。凭借得到的分析见解和智慧,企业能够使用AI和机器学习扩大业务影响力。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21