热线电话:13121318867

登录
首页精彩阅读机器学习—局部加权线性回归
机器学习—局部加权线性回归
2018-06-01
收藏


机器学习—局部加权线性回归

机器学习—局部加权线性回归

介绍之前先提稍微一下线性回归,用最小二乘法等方法,拟合出最适合训练集的一条直线。

我们得到了最小二乘损失函数为   , 通过求得损失函数的极小值来求得参数。


局部加权线性回归的进行前提必须要有预测值x才可以进行,它的原理是损失函数变为 


的表达式如下:

这里的x就是预测值,所以必须要有预测值才可以求出损失函数,通过求损失函数的极小值来得到参数。与X的分布于正态分布类似,但和正态分布没有一毛钱关系。

图就不画了,说一下  当预测值和训练集很接近时,权值为1;当相隔很远时,权值为0

Γ的值提前也要设置好,这个代表着W(i)上升和下降的速率。

最后通过求得J(Θ)的极小值就可以得到Θ向量。

缺点很明显了,你想要预测一个值就要求一组Θ向量,当你要预测很多值(数据集很大)时,或者甚至你要预测几乎所有连续的X想得到一条拟合曲线时(微积分一段段线性回归的组合),这TM成本太高,计算太慢了,所以在看清数据集大小的情况下慎重选择算法模型。

PS.通俗一点讲就是利用接近预测值x的训练集点来拟合一条直线,某种意义讲你可以把它想象原来庞大的训练集分割成只有接近x的数据集来进行线性回归,但是这个和真正的局部加权线性回归不一样!记住了。


以下红色为局部线性回归模型,蓝色就是线线性回归,可以看到预测值在红色时比较精确。

当然可以想想看,如果拟合一条二次的曲线(即非线性),在图中的黄色曲线预测效果也是不错的。当然你可以选择1次,2次.....这样的模型去试,看看效果。如果你不想这么做,就可以选择局部线性回归


额,有时间在上一python代码吧。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询