
R语言解析JSON格式数据文件
由于分析的数据格式为JSON格式,既占空间,而且分析时也非常的不方便,所以,我们需要对JSON格式
的数据进行解析,使其符合R语言分析所需要的数据格式,如data.frame,list等。
在R语言的包库中,已经有人对JSON格式的解析做了完整的包jsonlite,这极大地减轻了分析人员的工作压力。
jsonlite包中有以下几个函数
1、flatten
其中flatten函数是用来处理JSON中含有内嵌表格的情况,这种JSON文件解析为data.frame时,会在data.frame中
的某一列或多个列中另外包含一个data.frame。flatten函数可以将这种data.frame转换为一个2维的列表结构。通俗
点讲,就是讲内嵌表格的属性作为外置大表格的属性,组成一个维数变大了的表格。例如
上图的x表格,stats为一个内嵌表格,具有3个属性。
经过flatten(x)函数转化后,变为一个表格
2、prettify,minify
prettify是一个美化函数,对json密集的json格式,通过增加空白,对格式进行标准化,这样我们在观察json数据时会比较方便。
例如:
minify是一个压缩函数,与prettify做的事情正好相反,其效果如下
这两个函数使用都非常简单,仅需要一个JSON对象即可,可以从toJSON函数获得
3、rbind.pages
这是一个合并函数,根据官方文档的说法,它可以将多个data.frame合并为1个data.frame。
这个函数非常只能,可以自动识别多个data.frame的属性是否相同,若相同,则按行合并,若不同,则将相同的地方按行合并,不同的属性按列合并
例如:
x <- data.frame(foo = rnorm(3), bar = c(TRUE, FALSE, TRUE))
y <- data.frame(foo = rnorm(2), bar = c("blue", "red"))
rbind.pages(list(x, y))
直接按行合并了。
x <- data.frame(foo = rnorm(3), bar = c(TRUE, FALSE, TRUE))
y <- data.frame(foo = rnorm(2), col = c("blue", "red"))
rbind.pages(list(x, y))
对foo按行合并了,而col属性是按照列合并的,没有的部分用NA代替。
4、serializeJSON
将一个R的对象序列化为一个JSON数据集。
5、stream_in,stream_out
利用流文件来处理JSON格式的数据解析任务。这种方法可以针对数据量非常大的情况。
stream_in(con, handler, pagesize = 500, verbose = TRUE, ...)
其中con为一个连接对象,可以是一个网络ur,也可以是一个文件路径
handler是一个自定义函数,pagesize用来指定我们从文件中要读取的文件行数。
verbose=T,设置是否打印出处理行数
stream_out(x, con = stdout(), pagesize = 500, verbose = TRUE, ...)
x为一个需要输出为json数据集的对象,目前只支持data.frame
5、toJSON,fromJSON
与stream_in和stream_out的功能类似,toJSON是转化为JSON格式,fromJSON是将JSON格式数据集转化为
R中的格式,一般为list.
具体使用方法可以查帮助文档。
其中fromJSON在读取多行JSON数据时会报错,只能单行读取数据。
总结
进行JSON格式数据解析时,没有特殊要求,建议使用stream_in函数。如果希望按照自己的想法来解析,可以使用fromJSON
按行解析,然后对字符串按照自己的想法处理,如加密,解密等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08