横向对比分析Python解析XML的四种方式
在最初学习PYTHON的时候,只知道有DOM和SAX两种解析方法,但是其效率都不够理想,由于需要处理的文件数量太大,这两种方式耗时太高无法接受。
在网络搜索后发现,目前应用比较广泛,且效率相对较高的ElementTree也是一个比较多人推荐的算法,于是拿这个算法来实测对比,ElementTree也包括两种实现,一个是普通ElementTree(ET),一个是ElementTree.iterparse(ET_iter)。
本文将对DOM、SAX、ET、ET_iter四种方式进行横向对比,通过处理相同文件比较各个算法的用时来评估其效率。
程序中将四种解析方法均写为函数,在主程序中分别调用,来评估其解析效率。
解压后的XML文件内容示例为:
主程序函数调用部分代码为:
print("文件计数:%d/%d." % (gz_cnt,paser_num))
str_s,cnt = dom_parser(gz)
#str_s,cnt = sax_parser(gz)
#str_s,cnt = ET_parser(gz)
#str_s,cnt = ET_parser_iter(gz)
output.write(str_s)
vs_cnt += cnt
在最初的函数调用中函数返回两个值,但接收函数调用值时用两个变量分别调用,导致每个函数都要执行两次,之后修改为一次调用两个变量接收返回值,减少了无效调用。
1、DOM解析
函数定义代码:
def dom_parser(gz):
import gzip,cStringIO
import xml.dom.minidom
vs_cnt = 0
str_s = ''
file_io = cStringIO.StringIO()
xm = gzip.open(gz,'rb')
print("已读入:%s.\n解析中:" % (os.path.abspath(gz)))
doc = xml.dom.minidom.parseString(xm.read())
bulkPmMrDataFile = doc.documentElement
#读入子元素
enbs = bulkPmMrDataFile.getElementsByTagName("eNB")
measurements = enbs[0].getElementsByTagName("measurement")
objects = measurements[0].getElementsByTagName("object")
#写入csv文件
for object in objects:
vs = object.getElementsByTagName("v")
vs_cnt += len(vs)
for v in vs:
file_io.write(enbs[0].getAttribute("id")+' '+object.getAttribute("id")+' '+\
object.getAttribute("MmeUeS1apId")+' '+object.getAttribute("MmeGroupId")+' '+object.getAttribute("MmeCode")+' '+\
object.getAttribute("TimeStamp")+' '+v.childNodes[0].data+'\n') #获取文本值
str_s = (((file_io.getvalue().replace(' \n','\r\n')).replace(' ',',')).replace('T',' ')).replace('NIL','')
xm.close()
file_io.close()
return (str_s,vs_cnt)
程序运行结果:
**************************************************
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
**************************************************
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
………………………………………
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:107.077867,每秒处理行数:1660。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。
**************************************************
程序处理结束。
由于DOM解析需要将整个文件读入内存,并建立树结构,其内存消耗和时间消耗都比较高,但其优点在于逻辑简单,不需要定义回调函数,便于实现。
2、SAX解析
函数定义代码:
def sax_parser(gz):
import os,gzip,cStringIO
from xml.parsers.expat import ParserCreate
#变量声明
d_eNB = {}
d_obj = {}
s = ''
global flag
flag = False
file_io = cStringIO.StringIO()
#Sax解析类
class DefaultSaxHandler(object):
#处理开始标签
def start_element(self, name, attrs):
global d_eNB
global d_obj
global vs_cnt
if name == 'eNB':
d_eNB = attrs
elif name == 'object':
d_obj = attrs
elif name == 'v':
file_io.write(d_eNB['id']+' '+ d_obj['id']+' '+d_obj['MmeUeS1apId']+' '+d_obj['MmeGroupId']+' '+d_obj['MmeCode']+' '+d_obj['TimeStamp']+' ')
vs_cnt += 1
else:
pass
#处理中间文本
def char_data(self, text):
global d_eNB
global d_obj
global flag
if text[0:1].isnumeric():
file_io.write(text)
elif text[0:17] == 'MR.LteScPlrULQci1':
flag = True
#print(text,flag)
else:
pass
#处理结束标签
def end_element(self, name):
global d_eNB
global d_obj
if name == 'v':
file_io.write('\n')
else:
pass
#Sax解析调用
handler = DefaultSaxHandler()
parser = ParserCreate()
parser.StartElementHandler = handler.start_element
parser.EndElementHandler = handler.end_element
parser.CharacterDataHandler = handler.char_data
vs_cnt = 0
str_s = ''
xm = gzip.open(gz,'rb')
print("已读入:%s.\n解析中:" % (os.path.abspath(gz)))
for line in xm.readlines():
parser.Parse(line) #解析xml文件内容
if flag:
break
str_s = file_io.getvalue().replace(' \n','\r\n').replace(' ',',').replace('T',' ').replace('NIL','') #写入解析后内容
xm.close()
file_io.close()
return (str_s,vs_cnt)
程序运行结果:
**************************************************
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
**************************************************
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
.........................................
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:14.386779,每秒处理行数:12361。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。
**************************************************
程序处理结束。
SAX解析相比DOM解析,运行时间大幅缩短,由于SAX采用逐行解析,对于处理较大文件其占用内存也少,因此SAX解析是目前应用较多的一种解析方法。其缺点在于需要自己实现回调函数,逻辑较为复杂。
3、ET解析
函数定义代码:
def ET_parser(gz):
import os,gzip,cStringIO
import xml.etree.cElementTree as ET
vs_cnt = 0
str_s = ''
file_io = cStringIO.StringIO()
xm = gzip.open(gz,'rb')
print("已读入:%s.\n解析中:" % (os.path.abspath(gz)))
tree = ET.ElementTree(file=xm)
root = tree.getroot()
for elem in root[1][0].findall('object'):
for v in elem.findall('v'):
file_io.write(root[1].attrib['id']+' '+elem.attrib['TimeStamp']+' '+elem.attrib['MmeCode']+' '+\
elem.attrib['id']+' '+ elem.attrib['MmeUeS1apId']+' '+ elem.attrib['MmeGroupId']+' '+ v.text+'\n')
vs_cnt += 1
str_s = file_io.getvalue().replace(' \n','\r\n').replace(' ',',').replace('T',' ').replace('NIL','') #写入解析后内容
xm.close()
file_io.close()
return (str_s,vs_cnt)
程序运行结果:
**************************************************
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
**************************************************
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
...........................................
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:4.308103,每秒处理行数:41282。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。
**************************************************
程序处理结束。
相较于SAX解析,ET解析时间更短,并且函数实现也比较简单,所以ET具有类似DOM的简单逻辑实现且匹敌SAX的解析效率,因此ET是目前XML解析的首选。
4、ET_iter解析
函数定义代码:
def ET_parser_iter(gz):
import os,gzip,cStringIO
import xml.etree.cElementTree as ET
vs_cnt = 0
str_s = ''
file_io = cStringIO.StringIO()
xm = gzip.open(gz,'rb')
print("已读入:%s.\n解析中:" % (os.path.abspath(gz)))
d_eNB = {}
d_obj = {}
i = 0
for event,elem in ET.iterparse(xm,events=('start','end')):
if i >= 2:
break
elif event == 'start':
if elem.tag == 'eNB':
d_eNB = elem.attrib
elif elem.tag == 'object':
d_obj = elem.attrib
elif event == 'end' and elem.tag == 'smr':
i += 1
elif event == 'end' and elem.tag == 'v':
file_io.write(d_eNB['id']+' '+d_obj['TimeStamp']+' '+d_obj['MmeCode']+' '+d_obj['id']+' '+\
d_obj['MmeUeS1apId']+' '+ d_obj['MmeGroupId']+' '+str(elem.text)+'\n')
vs_cnt += 1
elem.clear()
str_s = file_io.getvalue().replace(' \n','\r\n').replace(' ',',').replace('T',' ').replace('NIL','') #写入解析后内容
xm.close()
file_io.close()
return (str_s,vs_cnt)
程序运行结果:
**************************************************
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
**************************************************
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
...................................................
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:3.043805,每秒处理行数:58429。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。
**************************************************
程序处理结束。
在引入了ET_iter解析后,解析效率比ET提升了近50%,而相较于DOM解析更是提升了35倍,在解析效率提升的同时,由于其采用了iterparse这个循序解析的工具,其内存占用也是比较小的。
所以,小伙伴们,请好好利用这几种工具吧。
以上就是本文的全部内容,希望对大家的学习有所帮助。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16