R语言混合型数据聚类分析案例
利用聚类分析,我们可以很容易地看清数据集中样本的分布情况。以往介绍聚类分析的文章中通常只介绍如何处理连续型变量,这些文字并没有过多地介绍如何处理混合型数据(如同时包含连续型变量、名义型变量和顺序型变量的数据)。本文将利用 Gower 距离、PAM(partitioning around medoids)算法和轮廓系数来介绍如何对混合型数据做聚类分析。
本文主要分为三个部分:
距离计算
聚类算法的选择
聚类个数的选择
为了介绍方便,本文直接使用 ISLR 包中的 College 数据集。该数据集包含了自 1995 年以来美国大学的 777 条数据,其中主要有以下几个变量:
连续型变量
录取率
学费
新生数量
分类型变量
公立或私立院校
是否为高水平院校,即所有新生中毕业于排名前 10% 高中的新生数量占比是否大于 50%
本文中涉及到的R包有:
In [3]:
set.seed(1680) # 设置随机种子,使得本文结果具有可重现性
library(dplyr)
library(ISLR)
library(cluster)
library(Rtsne)
library(ggplot2)
Attaching package: ‘dplyr’
The following objects are masked from ‘package:stats’:
filter, lag
The following objects are masked from ‘package:base’:
intersect, setdiff, setequal, union
构建聚类模型之前,我们需要做一些数据清洗工作:
录取率等于录取人数除以总申请人数
判断某个学校是否为高水平院校,需要根据该学校的所有新生中毕业于排名前 10% 高中的新生数量占比是否大于 50% 来决定
In [5]:
college_clean <- College %>%
mutate(name = row.names(.),
accept_rate = Accept/Apps,
isElite = cut(Top10perc,
breaks = c(0, 50, 100),
labels = c("Not Elite", "Elite"),
include.lowest = TRUE)) %>%
mutate(isElite = factor(isElite)) %>%
select(name, accept_rate, Outstate, Enroll,
Grad.Rate, Private, isElite)
glimpse(college_clean)
Observations: 777
Variables: 7
$ name (chr) "Abilene Christian University", "Adelphi University", "...
$ accept_rate (dbl) 0.7421687, 0.8801464, 0.7682073, 0.8369305, 0.7564767, ...
$ Outstate (dbl) 7440, 12280, 11250, 12960, 7560, 13500, 13290, 13868, 1...
$ Enroll (dbl) 721, 512, 336, 137, 55, 158, 103, 489, 227, 172, 472, 4...
$ Grad.Rate (dbl) 60, 56, 54, 59, 15, 55, 63, 73, 80, 52, 73, 76, 74, 68,...
$ Private (fctr) Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes,...
$ isElite (fctr) Not Elite, Not Elite, Not Elite, Elite, Not Elite, Not...
距离计算
聚类分析的第一步是定义样本之间距离的度量方法,最常用的距离度量方法是欧式距离。然而欧氏距离只适用于连续型变量,所以本文将采用另外一种距离度量方法—— Gower 距离。
Gower 距离
Gower 距离的定义非常简单。首先每个类型的变量都有特殊的距离度量方法,而且该方法会将变量标准化到[0,1]之间。接下来,利用加权线性组合的方法来计算最终的距离矩阵。不同类型变量的计算方法如下所示:
连续型变量:利用归一化的曼哈顿距离
顺序型变量:首先将变量按顺序排列,然后利用经过特殊调整的曼哈顿距离
名义型变量:首先将包含 k 个类别的变量转换成 k 个 0-1 变量,然后利用 Dice 系数做进一步的计算
优点:通俗易懂且计算方便
缺点:非常容易受无标准化的连续型变量异常值影响,所以数据转换过程必不可少;该方法需要耗费较大的内存
利用 daisy 函数,我们只需要一行代码就可以计算出 Gower 距离。需要注意的是,由于新生入学人数是右偏变量,我们需要对其做对数转换。daisy 函数内置了对数转换的功能,你可以调用帮助文档来获取更多的参数说明。
In [6]:
# Remove college name before clustering
gower_dist <- daisy(college_clean[, -1],
metric = "gower",
type = list(logratio = 3))
# Check attributes to ensure the correct methods are being used
# (I = interval, N = nominal)
# Note that despite logratio being called,
# the type remains coded as "I"
summary(gower_dist)
Out[6]:
301476 dissimilarities, summarized :
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0018601 0.1034400 0.2358700 0.2314500 0.3271400 0.7773500
Metric : mixed ; Types = I, I, I, I, N, N
Number of objects : 777
此外,我们可以通过观察最相似和最不相似的样本来判断该度量方法的合理性。本案例中,圣托马斯大学和约翰卡罗尔大学最相似,而俄克拉荷马科技和艺术大学和哈佛大学差异最大。
In [7]:
gower_mat <- as.matrix(gower_dist)
# Output most similar pair
college_clean[
which(gower_mat == min(gower_mat[gower_mat != min(gower_mat)]),
arr.ind = TRUE)[1, ], ]
Out[7]:
In [8]:
# Output most dissimilar pair
college_clean[
which(gower_mat == max(gower_mat[gower_mat != max(gower_mat)]),
arr.ind = TRUE)[1, ], ]
Out[8]:
聚类算法的选择
现在我们已经计算好样本间的距离矩阵,接下来需要选择一个合适的聚类算法,本文采用 PAM(partioniong around medoids)算法来构建模型:
PAM 算法的主要步骤:
随机选择 k 个数据点,并将其设为簇中心点
遍历所有样本点,并将样本点归入最近的簇中
对每个簇而言,找出与簇内其他点距离之和最小的点,并将其设为新的簇中心点
重复第2步,直到收敛
该算法和 K-means 算法非常相似。事实上,除了中心点的计算方法不同外,其他步骤都完全一致 。
优点:简单易懂且不易受异常值所影响
缺点:算法时间复杂度为 O(n2)O(n2)
聚类个数的选择
我们将利用轮廓系数来确定最佳的聚类个数,轮廓系数是一个用于衡量聚类离散度的内部指标,该指标的取值范围是[-1,1],其数值越大越好。通过比较不同聚类个数下轮廓系数的大小,我们可以看出当聚类个数为 3 时,聚类效果最好。
In [9]:
# Calculate silhouette width for many k using PAM
sil_width <- c(NA)
for(i in 2:10){
pam_fit <- pam(gower_dist,
diss = TRUE,
k = i)
sil_width[i] <- pam_fit$silinfo$avg.width
}
# Plot sihouette width (higher is better)
plot(1:10, sil_width,
xlab = "Number of clusters",
ylab = "Silhouette Width")
lines(1:10, sil_width)
聚类结果解释
描述统计量
聚类完毕后,我们可以调用 summary 函数来查看每个簇的汇总信息。从这些汇总信息中我们可以看出:簇1主要是中等学费且学生规模较小的私立非顶尖院校,簇2主要是高收费、低录取率且高毕业率的私立顶尖院校,而簇3则是低学费、低毕业率且学生规模较大的公立非顶尖院校。
In [18]:
pam_fit <- pam(gower_dist, diss = TRUE, k = 3)
pam_results <- college_clean %>%
dplyr::select(-name) %>%
mutate(cluster = pam_fit$clustering) %>%
group_by(cluster) %>%
do(the_summary = summary(.))
print(pam_results$the_summary)
[[1]]
accept_rate Outstate Enroll Grad.Rate Private
Min. :0.3283 Min. : 2340 Min. : 35.0 Min. : 15.00 No : 0
1st Qu.:0.7225 1st Qu.: 8842 1st Qu.: 194.8 1st Qu.: 56.00 Yes:500
Median :0.8004 Median :10905 Median : 308.0 Median : 67.50
Mean :0.7820 Mean :11200 Mean : 418.6 Mean : 66.97
3rd Qu.:0.8581 3rd Qu.:13240 3rd Qu.: 484.8 3rd Qu.: 78.25
Max. :1.0000 Max. :21700 Max. :4615.0 Max. :118.00
isElite cluster
Not Elite:500 Min. :1
Elite : 0 1st Qu.:1
Median :1
Mean :1
3rd Qu.:1
Max. :1
[[2]]
accept_rate Outstate Enroll Grad.Rate Private
Min. :0.1545 Min. : 5224 Min. : 137.0 Min. : 54.00 No : 4
1st Qu.:0.4135 1st Qu.:13850 1st Qu.: 391.0 1st Qu.: 77.00 Yes:65
Median :0.5329 Median :17238 Median : 601.0 Median : 89.00
Mean :0.5392 Mean :16225 Mean : 882.5 Mean : 84.78
3rd Qu.:0.6988 3rd Qu.:18590 3rd Qu.:1191.0 3rd Qu.: 94.00
Max. :0.9605 Max. :20100 Max. :4893.0 Max. :100.00
isElite cluster
Not Elite: 0 Min. :2
Elite :69 1st Qu.:2
Median :2
Mean :2
3rd Qu.:2
Max. :2
[[3]]
accept_rate Outstate Enroll Grad.Rate Private
Min. :0.3746 Min. : 2580 Min. : 153 Min. : 10.00 No :208
1st Qu.:0.6423 1st Qu.: 5295 1st Qu.: 694 1st Qu.: 46.00 Yes: 0
Median :0.7458 Median : 6598 Median :1302 Median : 54.50
Mean :0.7315 Mean : 6698 Mean :1615 Mean : 55.42
3rd Qu.:0.8368 3rd Qu.: 7748 3rd Qu.:2184 3rd Qu.: 65.00
Max. :1.0000 Max. :15516 Max. :6392 Max. :100.00
isElite cluster
Not Elite:199 Min. :3
Elite : 9 1st Qu.:3
Median :3
Mean :3
3rd Qu.:3
Max. :3
PAM 算法的另一个优点是各个簇的中心点是实际的样本点。从聚类结果中我们可以看出,圣弗朗西斯大学是簇1 的中心点,巴朗德学院是簇2 的中心点,而密歇根州州立大学河谷大学是簇3 的中心点。
In [19]:
college_clean[pam_fit$medoids, ]
Out[19]:
可视化方法
t-SNE 是一种降维方法,它可以在保留聚类结构的前提下,将多维信息压缩到二维或三维空间中。借助t-SNE我们可以将 PAM 算法的聚类结果绘制出来,有趣的是私立顶尖院校和公立非顶尖院校这两个簇中间存在一个小聚类簇。
In [22]:
tsne_obj <- Rtsne(gower_dist, is_distance = TRUE)
tsne_data <- tsne_obj$Y %>%
data.frame() %>%
setNames(c("X", "Y")) %>%
mutate(cluster = factor(pam_fit$clustering),
name = college_clean$name)
ggplot(aes(x = X, y = Y), data = tsne_data) +
geom_point(aes(color = cluster))
进一步探究可以发现,这一小簇主要包含一些竞争力较强的公立院校,比如弗吉尼亚大学和加州大学伯克利分校。虽然无法通过轮廓系数指标来证明多分一类是合理的,但是这 13 所院校的确显著不同于其他三个簇的院校。
In [25]:
tsne_data %>%
filter(X > 15 & X < 25,
Y > -15 & Y < -10) %>%
left_join(college_clean, by = "name") %>%
collect %>%
.[["name"]]
Out[25]:
‘Kansas State University’
‘North Carolina State University at Raleigh’
‘Pennsylvania State Univ. Main Campus’
‘SUNY at Buffalo’
‘Texas A&M Univ. at College Station’
‘University of Georgia’
‘University of Kansas’
‘University of Maryland at College Park’
‘University of Minnesota Twin Cities’
‘University of Missouri at Columbia’
‘University of Tennessee at Knoxville’
‘University of Texas at Austin’
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13