热线电话:13121318867

登录
首页精彩阅读Python实现堆排序的方法详解
Python实现堆排序的方法详解
2018-06-06
收藏

Python实现堆排序的方法详解

本文实例讲述了Python实现堆排序的方法。分享给大家供大家参考,具体如下:

堆排序作是基本排序方法的一种,类似于合并排序而不像插入排序,它的运行时间为O(nlogn),像插入排序而不像合并排序,它是一种原地排序算法,除了输入数组以外只占用常数个元素空间。

堆(定义):(二叉)堆数据结构是一个数组对象,可以视为一棵完全二叉树。如果根结点的值大于(小于)其它所有结点,并且它的左右子树也满足这样的性质,那么这个堆就是大(小)根堆。

我们假设某个堆由数组A表示,A[1]为树的根,给定某个结点的下标i,其父结点、左孩子、右孩子的下标都可以计算出来:

PARENT(i):
    return i/2
LEFT(i):
    return 2i
RIGHT(i):
    return 2i+1

堆排序Python实现

所谓堆排序的过程,就是把一些无序的对象,逐步建立起一个堆的过程。
下面是用Python实现的堆排序的代码:


defbuild_max_heap(to_build_list):
  """建立一个堆"""
  # 自底向上建堆
  foriinrange(len(to_build_list)/2-1,-1,-1):
    max_heap(to_build_list,len(to_build_list), i)
defmax_heap(to_adjust_list, heap_size, index):
  """调整列表中的元素以保证以index为根的堆是一个最大堆"""
  # 将当前结点与其左右子节点比较,将较大的结点与当前结点交换,然后递归地调整子树
  left_child=2*index+1
  right_child=left_child+1
  ifleft_child < heap_sizeandto_adjust_list[left_child] > to_adjust_list[index]:
    largest=left_child
  else:
    largest=index
  ifright_child < heap_sizeandto_adjust_list[right_child] > to_adjust_list[largest]:
    largest=right_child
  iflargest !=index:
    to_adjust_list[index], to_adjust_list[largest]=\
    to_adjust_list[largest], to_adjust_list[index]
    max_heap(to_adjust_list, heap_size, largest)
defheap_sort(to_sort_list):
  """堆排序"""
  # 先将列表调整为堆
  build_max_heap(to_sort_list)
  heap_size=len(to_sort_list)
  # 调整后列表的第一个元素就是这个列表中最大的元素,将其与最后一个元素交换,然后将剩余的列表再调整为最大堆
  foriinrange(len(to_sort_list)-1,0,-1):
    to_sort_list[i], to_sort_list[0]=to_sort_list[0], to_sort_list[i]
    heap_size-=1
    max_heap(to_sort_list, heap_size,0)
if__name__=='__main__':
  to_sort_list=[4,1,3,2,16,9,10,14,8,7]
  heap_sort(to_sort_list)
  printto_sort_list



数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询