Python编码时应该注意的几个情况
在编程过程中,多了解语言周边的一些知识,以及一些技巧,可以让你加速成为一个优秀的程序员。
对于Python程序员,你需要注意一下本文所提到的这些事情。你也可以看看Zen of Python(Python之禅),这里面提到了一些注意事项,并配以示例,可以帮助你快速提高。
1. 漂亮胜于丑陋
实现一个功能:读取一列数据,只返回偶数并除以2。下面的代码,哪个更好一些呢?
2. 记住Python中非常简单的事情
3. 不要使用可变对象作为默认值
这是因为当def声明被执行时,默认参数总是被评估。
4. 使用iteritems而不是items
5. 使用isinstance ,而不是type
原因可参阅:stackoverflow
注意我使用的是basestring 而不是str,因为如果一个unicode对象是字符串的话,可能会试图进行检查。例如:
这是因为在Python 3.0以下版本中,有两个字符串类型str 和unicode。
6. 了解各种容器
Python有各种容器数据类型,在特定的情况下,相比内置容器(如list 和dict ),这是更好的选择。
我敢肯定,大部分人不使用它。我身边一些粗心大意的人,一些可能会用下面的方式来写代码。
也有人会说下面是一个更好的解决方案:
更确切来说,应该使用collection 类型defaultdict。
其他容器:
namedtuple() # 工厂函数,用于创建带命名字段的元组子类
deque # 类似列表的容器,允许任意端快速附加和取出
Counter # dict子类,用于哈希对象计数
OrderedDict # dict子类,用于存储添加的命令记录
defaultdict # dict子类,用于调用工厂函数,以补充缺失的值
7. Python中创建类的魔术方法(magic methods)
__eq__(self, other) # 定义 == 运算符的行为
__ne__(self, other) # 定义 != 运算符的行为
__lt__(self, other) # 定义 < 运算符的行为
__gt__(self, other) # 定义 > 运算符的行为
__le__(self, other) # 定义 <= 运算符的行为
__ge__(self, other) # 定义 >= 运算符的行为
8. 必要时使用Ellipsis(省略号“...”)
Ellipsis 是用来对高维数据结构进行切片的。作为切片(:)插入,来扩展多维切片到所有的维度。例如:
>>> from numpy import arange
>>> a = arange(16).reshape(2,2,2,2)
# 现在,有了一个4维矩阵2x2x2x2,如果选择4维矩阵中所有的首元素,你可以使用ellipsis符号。
>>> a[..., 0].flatten()
array([ 0, 2, 4, 6, 8, 10, 12, 14])
# 这相当于
>>> a[:,:,:,0].flatten()
array([ 0, 2, 4, 6, 8, 10, 12, 14])
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21