认为你的公司需要数据科学家?你可能错了
当我在15年前开始从事数据工作时,我从未想过近年来数据科学家会如此备受追捧。如今,数据科学家被认为是全球最热门的职位之一,市场上对数据科学家的需求供不应求。
创业公司在产品生命周期的早期招聘数据科学家的情况并不罕见。其实很多情况下,他们并不需要数据科学家。
作为一名数据科学方面的倡导者,为什么我会这么认为呢?
首先,我想声明的是雇用数据科学家确实有很多好处。如果使用得当,数据科学家将成为强大的商业武器。我想强调的是,数据科学当中涉及到大量的数据相关操作和技巧,这不是在短期培训中就能掌握的。
因此,当企业需要聘请数据科学家时,需要慎重考虑应该何时聘请哪种数据科学家。
当企业打算聘请数据科学家之前,可以先试着问自己以下四个问题:
1. 有多少数据?
如果你是一家尚未启动的创业公司,那么你们可能并不需要全职数据科学家。其实,如果你的公司已经发展的较为成熟,但只有小规模的客户、产品或会员基础,那么你也不需要数据科学家。
为什么呢?显然数据科学家需要数据。不是任何数据都可以。许多技术需要至少数万个、甚至数百万个数据点才能构建。
如今,深度学习备受关注。在针对数据科学家的工作描述中充满了神经网络、计算机视觉和自然语言处理等术语。而这类技术依赖于大量的训练数据。谷歌翻译就是建立在超过1.5亿个词汇基础上的神经网络。成功部署这型模型所需的数据量超过了许多公司加起来的数据总量。
很多技术比深度学习使用更少的数据,但是当中仍然需要相当大的样本,还需要能够判断何时使用哪种方法的知识储备。目前需要大量的投入才能创建数据科学所需要的环境,拥有资金和昂贵的资源是远远不够的。
2. 是否有已制定的关键绩效指标(KPI)和商业智能报表?
如果没有对企业驱动因素的基本了解,那么将难以利用先进技术。
数据科学家能够通过机器学习进行预测,例如哪些用户会流失、哪些用户很活跃。但是如果缺乏对流失和高度活跃的定义,那么在构建预测模型之前会遇到问题。
此外,如果没有足够的指标进行评估,那么将很难验证模型。A/B测试等其他技术需要总体评估标准(OEC),这通常是业务驱动的KPI。
3. 数据科学家要做什么?
这是四个问题中最主观和最有趣的问题,“你想让数据科学家做什么?”我得到的最常见的答案是:“我们不知道,这也是为什么我们需要雇用一位。”
在这种情况下,我会告诉该企业这是行不通的。虽然聘请数据科学家时,你并不需要成为该方面的专家,但是你应该清楚哪些是可行的、哪些是不可行的,从而不会设定不切实际的期望。
数据科学不是魔术,但也不是传统科学。数据科学是一门艺术,也是一门科学,这意味着当中技术和能力的可变性很大。企业可以考虑让现有团队的成员发展成数据科学家。对现有分析师来说,进入数据科学领域的方式之一是对现有的KPI进行预测。一方面,他们有机会学习熟悉的数据; 另一方面,对现有员工进行投资意味着将来市场招聘的需求减少。
4. 数据科学家有哪些内部支持?
如果数据科学家在你的企业没有适当的支持,那么请不要为招募他们而投资。近年来,数据科学课程数量激增,然而许多毕业生并没有准备好解决业务问题。绝大多数课程都让学生解决预先清洁好的数据。在现实世界中,干净的数据并不存在。
在没有高级数据科学家指导的前提下,聘请初级数据科学家并不明智,初级数据科学家会遇到难题,而且往往会导致错误的分析。初级的数据科学家团队难以将业务问题转化为技术问题,而错误的分析会导致任务难以完成。
聘请高级数据科学家并不能完全缓解这个问题,部分原因在于很难证明雇佣人员的水平和资历。如果你很幸运地聘请到优秀的人员,他仍然需要来自领导团队的大量支持。比如,创建从未使用过的模型;或者进行A/B测试但结果被忽略。更糟的是,分析问题所需的数据并没有被收集。
通常,必要的第一步是强大的数据收集程序,这需要由工程师或数据库管理员提供,而不是数据科学家。在很多企业中,高级数据科学家需要花大量时间完成数据需求和团队部署,而这很容易导致高级数据科学家的流失。
结语
招聘和留住优秀的数据科学家的成本是很昂贵的。但如果能明确何时聘用、如何聘用、聘用哪种人才,则能够有效地减少成本。
不要陷入招聘广告的陷阱,那些只是对工作技能的简单罗列。不要奢望数据科学家会魔法。一定要明确自身的真实需求,如果可能的话,在进行招聘之前咨询专业人员。企业数据方面的成功取决于以上这几点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12