热线电话:13121318867

登录
首页精彩阅读认为你的公司需要数据科学家?你可能错了
认为你的公司需要数据科学家?你可能错了
2018-06-07
收藏

认为你的公司需要数据科学家?你可能错了

当我在15年前开始从事数据工作时,我从未想过近年来数据科学家会如此备受追捧。如今,数据科学家被认为是全球最热门的职位之一,市场上对数据科学家的需求供不应求。

创业公司在产品生命周期的早期招聘数据科学家的情况并不罕见。其实很多情况下,他们并不需要数据科学家。

作为一名数据科学方面的倡导者,为什么我会这么认为呢?

首先,我想声明的是雇用数据科学家确实有很多好处。如果使用得当,数据科学家将成为强大的商业武器。我想强调的是,数据科学当中涉及到大量的数据相关操作和技巧,这不是在短期培训中就能掌握的。

因此,当企业需要聘请数据科学家时,需要慎重考虑应该何时聘请哪种数据科学家。

当企业打算聘请数据科学家之前,可以先试着问自己以下四个问题:

1. 有多少数据?

如果你是一家尚未启动的创业公司,那么你们可能并不需要全职数据科学家。其实,如果你的公司已经发展的较为成熟,但只有小规模的客户、产品或会员基础,那么你也不需要数据科学家。

为什么呢?显然数据科学家需要数据。不是任何数据都可以。许多技术需要至少数万个、甚至数百万个数据点才能构建。

如今,深度学习备受关注。在针对数据科学家的工作描述中充满了神经网络计算机视觉和自然语言处理等术语。而这类技术依赖于大量的训练数据。谷歌翻译就是建立在超过1.5亿个词汇基础上的神经网络。成功部署这型模型所需的数据量超过了许多公司加起来的数据总量。

很多技术比深度学习使用更少的数据,但是当中仍然需要相当大的样本,还需要能够判断何时使用哪种方法的知识储备。目前需要大量的投入才能创建数据科学所需要的环境,拥有资金和昂贵的资源是远远不够的。

2. 是否有已制定的关键绩效指标(KPI)和商业智能报表?

如果没有对企业驱动因素的基本了解,那么将难以利用先进技术。

数据科学家能够通过机器学习进行预测,例如哪些用户会流失、哪些用户很活跃。但是如果缺乏对流失和高度活跃的定义,那么在构建预测模型之前会遇到问题。

此外,如果没有足够的指标进行评估,那么将很难验证模型。A/B测试等其他技术需要总体评估标准(OEC),这通常是业务驱动的KPI。

3. 数据科学家要做什么?

这是四个问题中最主观和最有趣的问题,“你想让数据科学家做什么?”我得到的最常见的答案是:“我们不知道,这也是为什么我们需要雇用一位。” 

在这种情况下,我会告诉该企业这是行不通的。虽然聘请数据科学家时,你并不需要成为该方面的专家,但是你应该清楚哪些是可行的、哪些是不可行的,从而不会设定不切实际的期望。

数据科学不是魔术,但也不是传统科学。数据科学是一门艺术,也是一门科学,这意味着当中技术和能力的可变性很大。企业可以考虑让现有团队的成员发展成数据科学家。对现有分析师来说,进入数据科学领域的方式之一是对现有的KPI进行预测。一方面,他们有机会学习熟悉的数据; 另一方面,对现有员工进行投资意味着将来市场招聘的需求减少。

4. 数据科学家有哪些内部支持?

如果数据科学家在你的企业没有适当的支持,那么请不要为招募他们而投资。近年来,数据科学课程数量激增,然而许多毕业生并没有准备好解决业务问题。绝大多数课程都让学生解决预先清洁好的数据。在现实世界中,干净的数据并不存在。

在没有高级数据科学家指导的前提下,聘请初级数据科学家并不明智,初级数据科学家会遇到难题,而且往往会导致错误的分析。初级的数据科学家团队难以将业务问题转化为技术问题,而错误的分析会导致任务难以完成。

聘请高级数据科学家并不能完全缓解这个问题,部分原因在于很难证明雇佣人员的水平和资历。如果你很幸运地聘请到优秀的人员,他仍然需要来自领导团队的大量支持。比如,创建从未使用过的模型;或者进行A/B测试但结果被忽略。更糟的是,分析问题所需的数据并没有被收集。

通常,必要的第一步是强大的数据收集程序,这需要由工程师或数据库管理员提供,而不是数据科学家。在很多企业中,高级数据科学家需要花大量时间完成数据需求和团队部署,而这很容易导致高级数据科学家的流失。

结语

招聘和留住优秀的数据科学家的成本是很昂贵的。但如果能明确何时聘用、如何聘用、聘用哪种人才,则能够有效地减少成本。

不要陷入招聘广告的陷阱,那些只是对工作技能的简单罗列。不要奢望数据科学家会魔法。一定要明确自身的真实需求,如果可能的话,在进行招聘之前咨询专业人员。企业数据方面的成功取决于以上这几点。


数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询