
R语言之读取Excel及csv数据
1、读取R内置数据 data()
data() #查看数据集列表
data(mtcars) #载入数据集
如用library()载入程序包后,可用data(package=”“)查看包内附带的数据集。
library(vcd)
data(package="vcd") #查看vcd包中的数据集
data(Arthritis,package = "vcd") #载入数据集Arthritis
2、键盘输入数据
a、调用文本编辑器edit()。
首先必须创建一个空的数据框或者矩阵,且数据框或者矩阵中的变量名与变量类型必须与最终数据集一致。下列代码创建了一个名为mydata的数据框,数据框里保存了姓名,英语成绩,数学成绩三个变量,且通过调用文本编辑器edit()可修改或增加变量。
mydata<-data.frame(name=character(0),English=numeric(0),Math=numeric(0)) #创建一个空的数据框
mydata<-edit(mydata)
mydata
程序运行结果如下:
可在此数据编辑器中直接输入数据,或者通过单击来修改变量名或者变量类型,也可以增加变量。
b、直接在程序中嵌入数据,代码如下:
> mydatatext<-"
+ name English Math
+ 张三 92 93
+ 李四 80 92
+ "
> mydata<-read.table(header=T,text=mydatatext)
> mydata
name English Math
1 张三 92 93
2 李四 80 92
3、导入带分隔符的文本文件(ASCII)
使用read.table()导入一个带分隔符的文本文件,其输出类型为数据框。语法如下:
read.table(file , header=F , sep=”” ,quote , row.names , col.names , na.strings=”NA” , colClasses , skip , stringsAsFactors=T, blank.lines.skip=T, strip.white=F, text,…)
下面使用read.table()来读取一个分隔符为逗号,名为“分数”的csv文件,代码如下:
>mydata<-read.table(header=T,file="C:\\Users\\mx\\Desktop\\分数.csv",sep=",") #路径中的单右斜杠“\”需换成双右斜杠“\\”或者单左斜杠“/”。文件名后一定要加上扩展名
> mydata
name English Math
1 张三 92 93
2 李四 80 92
与read.table()用法类似的函数还有read.csv(),read.delim()。
*
*4、读取Excel数据read.xlsx()
a、将其保存为csv格式,用前文所描述的方法读取
b、直接用read.xlsx()读取。读取前确保已安装“xlsxjars”,”rJava”,”xlsx”包,且第一次使用前需确保配置了Java环境。下载安装的Java的位数必须与电脑位数、R的位数一致。
语法: read.xlsx(file, n),其中n表示要读取的工作表序号。
如用read.xlsx()读取以上名为“分数”的.xlsx形式,代码如下:
> library(xlsxjars)
> library(rJava)
> library(xlsx)
> mydata<-read.xlsx("C:\\Users\\mx\\Desktop\\分数.xlsx",1,encoding="UTF-8") #encoding="UFT-8"调整中文字集符,防止表格中的中文读取时乱码
> mydata
name English Math
1 张三 92 93
2 李四 80 92
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14