
凝聚层次聚类说明
层次聚类可以分成凝聚(agglomerative,自底向上)和分裂(divisive,自顶向下)两种方法来构建聚类层次,但不管采用那种算法,算法都需要距离的相似性度量来判断对数据究竟是采取合并还是分裂处理。
凝聚层次聚类操作
采用层次聚类,将客户数据集分成不同的组,从github上下载数据:
https://github.com/ywchiu/ml_R_cookbook/tree/master/CH9下载
customer.csv文件
customer = read.csv("d:/R-TT/example/customer.csv")
head(customer,10)
ID Visit.Time Average.Expense Sex Age
1 1 3 5.7 0 10
2 2 5 14.5 0 27
3 3 16 33.5 0 32
4 4 5 15.9 0 30
5 5 16 24.9 0 23
6 6 3 12.0 0 15
7 7 12 28.5 0 33
8 8 14 18.8 0 27
9 9 6 23.8 0 16
10 10 3 5.3 0 11
检查数据集结构:
str(customer)
'data.frame': 60 obs. of 5 variables:
$ ID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Visit.Time : int 3 5 16 5 16 3 12 14 6 3 ...
$ Average.Expense: num 5.7 14.5 33.5 15.9 24.9 12 28.5 18.8 23.8 5.3 ...
$ Sex : int 0 0 0 0 0 0 0 0 0 0 ...
$ Age : int 10 27 32 30 23 15 33 27 16 11 ...
对客户数据进行归一化处理:
数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归一化方法:
一、min-max标准化(Min-Max Normalization)
也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数如下:
其中max为样本数据的最大值,min为样本数据的最小值。这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。
二、Z-score标准化方法
这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,转化函数为:
其中为所有样本数据的均值,为所有样本数据的标准差。
此处采用方法二
customer = scale(customer[,-1])
customer
Visit.Time Average.Expense Sex Age
[1,] -1.20219054 -1.35237652 -1.4566845 -1.23134396
[2,] -0.75693479 -0.30460718 -1.4566845 0.59951732
[3,] 1.69197187 1.95762206 -1.4566845 1.13800594
[4,] -0.75693479 -0.13791661 -1.4566845 0.92261049
[5,] 1.69197187 0.93366567 -1.4566845 0.16872643
[6,] -1.20219054 -0.60226893 -1.4566845 -0.69285535
[7,] 0.80146036 1.36229858 -1.4566845 1.24570366
[8,] 1.24671612 0.20737101 -1.4566845 0.59951732
[9,] -0.53430691 0.80269450 -1.4566845 -0.58515763
[10,] -1.20219054 -1.40000240 -1.4566845 -1.12364624
使用自底向上的聚类方法处理数据集:
hc = hclust(dist(customer,method = "euclidean"),method = "ward.D2")
> hc
Call:
hclust(d = dist(customer, method = "euclidean"), method = "ward.D2")
Cluster method : ward.D2
Distance : euclidean
Number of objects: 60
最后,调用plot函数绘制聚类树图
plot(hc,hang = -0.01,cex =0.7)
使用离差平方和绘制聚类树图
还可以使用最短距离法(single)来生成层次聚类并比较以下两者生成的聚类树图的差异:
hc2 = hclust(dist(customer),method = "single")
plot(hc2,hang = -0.01,cex = 0.7)
使用最短距离法绘制聚类树图
凝聚层次聚类原理
层次聚类是一种通过迭代来尝试建立层次聚类的方法,通常可以采用以下两种方式完成:
凝聚层次聚类
这是一个自底向上的聚类方法。算法开始时,每个观测样例都被划分到单独的簇中,算法计算得出每个簇之间的相似度(距离),并将两个相似度最高的簇合成一个簇,然后反复迭代,直到所有的数据都被划分到一个簇中。
分裂层次聚类
这是一种自顶向下的聚类算法,算法开始时,每个观测样例都被划分同一个簇中,然后算法开始将簇分裂成两个相异度最大的小簇,并反复迭代,直到每个观测值属于单独一个簇。
在执行层次聚类操作之前,我们需要确定两个簇之间的相似度到底有多大,通常我们会使用一些距离计算公式:
最短距离法(single linkage),计算每个簇之间的最短距离:
dist(c1,c2) = min dist(a,b)
最长距离法(complete linkage),计算每个簇中两点之间的最长距离:
dist(c1,c2) = max dist(a,b)
平均距离法(average linkage),计算每个簇中两点之间的平均距离:
最小方差法(ward),计算簇中每个点到合并后的簇中心的距离差的平方和。
调用plot函数绘制聚类图,样例的hang值小于0,因此聚类树将从底部显示标签,并使用cex将坐标轴上的标签字体大小缩小为正常的70%,此外,为了比较最小方差法和最短距离法在层次聚类上的差异,我们还绘制了使用最短距离法得到的聚类树图。
分裂层次聚类
调用diana函数执行分裂层次聚类
library(cluster)
dv = diana(customer,metric = "euclidean")
调用summary函数输出模型特征信
summary(dv)
如果想构建水平聚类树
library(magrittr)
dend = customer %>% dist %>% hclust %>% as.dendrogram
dend %>% plot(horiz = TRUE,main = "Horizontal Dendrogram")
水平聚类树
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10