
决策树算法的R实现
根据ppvk上的文章《基于 R 语言和 SPSS 的决策树算法介绍及应用》,只简单跑了关于R部分的代码,实验成功,简单记录下。
决策树算法简介
R语言实现
决策树算法
决策树算法是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。
一个简单的决策树示例(图片来源网络):
决策树由节点和有向边组成,内部节点代表了特征属性,外部节点(叶子节点)代表了类别,根据一步步地属性分类可以将整个特征空间进行划分,从而区别出不同的分类样本。好的决策树不仅对训练样本有着很好的分类效果,对于测试集也有着较低的误差率。
数据集纯度函数
信息增益
信息熵表示的是不确定度。均匀分布时,不确定度最大,此时熵就最大。当选择某个特征对数据集进行分类时,分类后的数据集信息熵会比分类前的小,其差值表示为信息增益。
假设在样本数据集 D 中,混有 c 种类别的数据。构建决策树时,根据给定的样本数据集选择某个特征值作为树的节点。
在数据集中,可以计算出该数据中的信息熵:其中 D 表示训练数据集,c 表示数据类别数,Pi 表示类别 i 样本数量占所有样本的比例。
作用前的信息熵公式
对应数据集 D,选择特征 A 作为决策树判断节点时,在特征 A 作用后的信息熵的为 Info(D),其中 k 表示样本 D 被分为 k 个部分。
信息增益表示数据集 D 在特征 A 的作用后,其信息熵减少的值
Gain\left ( A \right )=Info\left ( D \right ) - Info_{A}\left ( D \right )
对于决策树节点最合适的特征选择,就是 Gain(A) 值最大的特征。
基尼指数
对于给定的样本集合D, c 表示数据集中类别的数量,Pi 表示类别 i 样
选取的属性为 A,那么分裂后的数据集 D 的基尼指数的计算公式,其中 k 表示样本 D 被分为 k 个部分,数据集 D 分裂成为 k 个 Dj 数据集。
对于特征选取,需要选择最小的分裂后的基尼指数。也可以用基尼指数增益值作为决策树选择特征的依据
R语言实现决策树算法
实现决策树算法之前首先确保自己已经安装了所需相应的语言包。安装方法有两种。
方法一:使用 install.packages( ) ,括号内填写要安装的包。例如
install.packages("rpart")
方法二:自己在官网下载好语言包,手动安装。使用方法一安装时,如果自己安装的R的版本过低,而R在执行 install.packages( )命令时,会自动下载最新版本,可能与计算机上安装的R的版本不符合,导致运行不成功等问题,这时需要自己去官网上下载与本机上R版本相符的语言包进行安装。安装方法如下:
点击按键,弹出页面
点击browse,浏览你所保存的r语言包,选中后,点击install,即可安装。
使用rpart包
# 导入构建决策树所需要的库
library("rpart")
library("rpart.plot")
library("survival")
#--------------------------------------------------------------------------#
# A查看本次构建决策树所用的数据源 stagec
stagec
# 通过 rpart 函数构建决策树
fit <- rpart(Surv(pgtime,pgstat)~age+eet+g2+grade+gleason+ploidy,stagec,method="exp")
# 查看决策树的具体信息
print(fit)
printcp(fit)
# 绘制构建完的决策树图
plot(fit, uniform=T, branch=0.6, compress=T)
text(fit, use.n=T)
# 通过 prune 函数剪枝
fit2 <- prune(fit, cp=0.016)
# 绘制剪枝完后的决策树图
plot(fit2, uniform=T, branch=0.6, compress=T)
text(fit2, use.n=T)
#-------------------------------------------------------------------------#
#B(rpart包)使用TH.data包中的bodyfat数据集
str(TH.data::bodyfat)
dim(TH.data::bodyfat)
head(TH.data::bodyfat)
# 分别选取训练样本(70%)和测试样本(30%)
set.seed(1234)
indexa <- sample(2,nrow(TH.data::bodyfat),replace = TRUE,prob=c(0.7,0.3))
bodyfat_train <- TH.data::bodyfat[indexa==1,]
bodyfat_test <- TH.data::bodyfat[indexa==2,]
# 使用age、waistcirc等五个变量进行决策树分类
myFormulaa <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth
# minsplit为最小分支节点数
bodyfat_rpart <- rpart(myFormulaa, data = bodyfat_train, control = rpart.control(minsplit = 10))
# cptable: a matrix of information on the optimal prunings based on a complexity parameter.
print(bodyfat_rpart$cptable)
# 输出具体的决策树模型结果
bodyfat_rpart
# 可视化展示
rpart.plot::rpart.plot(bodyfat_rpart)
# 对决策树进行剪枝处理(prune),防止过度拟合
opt <- which.min(bodyfat_rpart$cptable[,"xerror"])
cp <- bodyfat_rpart$cptable[opt, "CP"]
bodyfat_prune <- prune(bodyfat_rpart, cp = cp)
plot(bodyfat_prune)
text(bodyfat_prune,use.n=T)
# 使用调整过后的决策树进行预测
DEXfat_pred <- predict(bodyfat_prune, newdata=bodyfat_test)
xlim <- range(TH.data::bodyfat$DEXfat)
plot(DEXfat_pred ~ DEXfat, data=bodyfat_test, xlab="Observed", ylab="Predicted", ylim=xlim, xlim=xlim)
# 为图形添加回归线,点的分布越靠近该线,则表示使用算法预测的精度越高
abline(a=0,b=1)
使用party包
# 载入所用的包,使用ctree()函数
library(party)
#本次构建决策树所用的数据源 iris
str(iris)
set.seed(1234)
#分别选取训练样本(70%)和测试样本(30%)
indexb <- sample(2, nrow(iris), replace = TRUE, prob = c(0.7,0.3))
traindata <- iris[indexb == 1,]
testdata <- iris[indexb == 2,]
# 构建模型
myFormulab <- Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
iris_ctree <- ctree(myFormulab, data=traindata)
# 决策树模型的判断结果
table(predict(iris_ctree), traindata$Species)
# 输出具体的决策树模型结果
print(iris_ctree)
# 可视化展示
plot(iris_ctree)
plot(iris_ctree,type='simple')
# predict on test data
testpred <- predict(iris_ctree,newdata=testdata)
table(testpred,testdata$Species)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10