决策树算法的R实现
根据ppvk上的文章《基于 R 语言和 SPSS 的决策树算法介绍及应用》,只简单跑了关于R部分的代码,实验成功,简单记录下。
决策树算法简介
R语言实现
决策树算法
决策树算法是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。
一个简单的决策树示例(图片来源网络):
决策树由节点和有向边组成,内部节点代表了特征属性,外部节点(叶子节点)代表了类别,根据一步步地属性分类可以将整个特征空间进行划分,从而区别出不同的分类样本。好的决策树不仅对训练样本有着很好的分类效果,对于测试集也有着较低的误差率。
数据集纯度函数
信息增益
信息熵表示的是不确定度。均匀分布时,不确定度最大,此时熵就最大。当选择某个特征对数据集进行分类时,分类后的数据集信息熵会比分类前的小,其差值表示为信息增益。
假设在样本数据集 D 中,混有 c 种类别的数据。构建决策树时,根据给定的样本数据集选择某个特征值作为树的节点。
在数据集中,可以计算出该数据中的信息熵:其中 D 表示训练数据集,c 表示数据类别数,Pi 表示类别 i 样本数量占所有样本的比例。
作用前的信息熵公式
对应数据集 D,选择特征 A 作为决策树判断节点时,在特征 A 作用后的信息熵的为 Info(D),其中 k 表示样本 D 被分为 k 个部分。
信息增益表示数据集 D 在特征 A 的作用后,其信息熵减少的值
Gain\left ( A \right )=Info\left ( D \right ) - Info_{A}\left ( D \right )
对于决策树节点最合适的特征选择,就是 Gain(A) 值最大的特征。
基尼指数
对于给定的样本集合D, c 表示数据集中类别的数量,Pi 表示类别 i 样
选取的属性为 A,那么分裂后的数据集 D 的基尼指数的计算公式,其中 k 表示样本 D 被分为 k 个部分,数据集 D 分裂成为 k 个 Dj 数据集。
对于特征选取,需要选择最小的分裂后的基尼指数。也可以用基尼指数增益值作为决策树选择特征的依据
R语言实现决策树算法
实现决策树算法之前首先确保自己已经安装了所需相应的语言包。安装方法有两种。
方法一:使用 install.packages( ) ,括号内填写要安装的包。例如
install.packages("rpart")
方法二:自己在官网下载好语言包,手动安装。使用方法一安装时,如果自己安装的R的版本过低,而R在执行 install.packages( )命令时,会自动下载最新版本,可能与计算机上安装的R的版本不符合,导致运行不成功等问题,这时需要自己去官网上下载与本机上R版本相符的语言包进行安装。安装方法如下:
点击按键,弹出页面
点击browse,浏览你所保存的r语言包,选中后,点击install,即可安装。
使用rpart包
# 导入构建决策树所需要的库
library("rpart")
library("rpart.plot")
library("survival")
#--------------------------------------------------------------------------#
# A查看本次构建决策树所用的数据源 stagec
stagec
# 通过 rpart 函数构建决策树
fit <- rpart(Surv(pgtime,pgstat)~age+eet+g2+grade+gleason+ploidy,stagec,method="exp")
# 查看决策树的具体信息
print(fit)
printcp(fit)
# 绘制构建完的决策树图
plot(fit, uniform=T, branch=0.6, compress=T)
text(fit, use.n=T)
# 通过 prune 函数剪枝
fit2 <- prune(fit, cp=0.016)
# 绘制剪枝完后的决策树图
plot(fit2, uniform=T, branch=0.6, compress=T)
text(fit2, use.n=T)
#-------------------------------------------------------------------------#
#B(rpart包)使用TH.data包中的bodyfat数据集
str(TH.data::bodyfat)
dim(TH.data::bodyfat)
head(TH.data::bodyfat)
# 分别选取训练样本(70%)和测试样本(30%)
set.seed(1234)
indexa <- sample(2,nrow(TH.data::bodyfat),replace = TRUE,prob=c(0.7,0.3))
bodyfat_train <- TH.data::bodyfat[indexa==1,]
bodyfat_test <- TH.data::bodyfat[indexa==2,]
# 使用age、waistcirc等五个变量进行决策树分类
myFormulaa <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth
# minsplit为最小分支节点数
bodyfat_rpart <- rpart(myFormulaa, data = bodyfat_train, control = rpart.control(minsplit = 10))
# cptable: a matrix of information on the optimal prunings based on a complexity parameter.
print(bodyfat_rpart$cptable)
# 输出具体的决策树模型结果
bodyfat_rpart
# 可视化展示
rpart.plot::rpart.plot(bodyfat_rpart)
# 对决策树进行剪枝处理(prune),防止过度拟合
opt <- which.min(bodyfat_rpart$cptable[,"xerror"])
cp <- bodyfat_rpart$cptable[opt, "CP"]
bodyfat_prune <- prune(bodyfat_rpart, cp = cp)
plot(bodyfat_prune)
text(bodyfat_prune,use.n=T)
# 使用调整过后的决策树进行预测
DEXfat_pred <- predict(bodyfat_prune, newdata=bodyfat_test)
xlim <- range(TH.data::bodyfat$DEXfat)
plot(DEXfat_pred ~ DEXfat, data=bodyfat_test, xlab="Observed", ylab="Predicted", ylim=xlim, xlim=xlim)
# 为图形添加回归线,点的分布越靠近该线,则表示使用算法预测的精度越高
abline(a=0,b=1)
使用party包
# 载入所用的包,使用ctree()函数
library(party)
#本次构建决策树所用的数据源 iris
str(iris)
set.seed(1234)
#分别选取训练样本(70%)和测试样本(30%)
indexb <- sample(2, nrow(iris), replace = TRUE, prob = c(0.7,0.3))
traindata <- iris[indexb == 1,]
testdata <- iris[indexb == 2,]
# 构建模型
myFormulab <- Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
iris_ctree <- ctree(myFormulab, data=traindata)
# 决策树模型的判断结果
table(predict(iris_ctree), traindata$Species)
# 输出具体的决策树模型结果
print(iris_ctree)
# 可视化展示
plot(iris_ctree)
plot(iris_ctree,type='simple')
# predict on test data
testpred <- predict(iris_ctree,newdata=testdata)
table(testpred,testdata$Species)
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20