 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		
	决策树算法的R实现
根据ppvk上的文章《基于 R 语言和 SPSS 的决策树算法介绍及应用》,只简单跑了关于R部分的代码,实验成功,简单记录下。
    决策树算法简介
    R语言实现
决策树算法
决策树算法是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。
一个简单的决策树示例(图片来源网络):

决策树由节点和有向边组成,内部节点代表了特征属性,外部节点(叶子节点)代表了类别,根据一步步地属性分类可以将整个特征空间进行划分,从而区别出不同的分类样本。好的决策树不仅对训练样本有着很好的分类效果,对于测试集也有着较低的误差率。
数据集纯度函数
信息增益
信息熵表示的是不确定度。均匀分布时,不确定度最大,此时熵就最大。当选择某个特征对数据集进行分类时,分类后的数据集信息熵会比分类前的小,其差值表示为信息增益。
假设在样本数据集 D 中,混有 c 种类别的数据。构建决策树时,根据给定的样本数据集选择某个特征值作为树的节点。
在数据集中,可以计算出该数据中的信息熵:其中 D 表示训练数据集,c 表示数据类别数,Pi 表示类别 i 样本数量占所有样本的比例。
作用前的信息熵公式

对应数据集 D,选择特征 A 作为决策树判断节点时,在特征 A 作用后的信息熵的为 Info(D),其中 k 表示样本 D 被分为 k 个部分。

信息增益表示数据集 D 在特征 A 的作用后,其信息熵减少的值
Gain\left ( A \right )=Info\left ( D \right ) - Info_{A}\left ( D \right )
对于决策树节点最合适的特征选择,就是 Gain(A) 值最大的特征。
基尼指数
对于给定的样本集合D, c 表示数据集中类别的数量,Pi 表示类别 i 样

选取的属性为 A,那么分裂后的数据集 D 的基尼指数的计算公式,其中 k 表示样本 D 被分为 k 个部分,数据集 D 分裂成为 k 个 Dj 数据集。

对于特征选取,需要选择最小的分裂后的基尼指数。也可以用基尼指数增益值作为决策树选择特征的依据

R语言实现决策树算法
实现决策树算法之前首先确保自己已经安装了所需相应的语言包。安装方法有两种。
方法一:使用 install.packages( ) ,括号内填写要安装的包。例如
install.packages("rpart")
方法二:自己在官网下载好语言包,手动安装。使用方法一安装时,如果自己安装的R的版本过低,而R在执行 install.packages( )命令时,会自动下载最新版本,可能与计算机上安装的R的版本不符合,导致运行不成功等问题,这时需要自己去官网上下载与本机上R版本相符的语言包进行安装。安装方法如下:
点击按键,弹出页面

点击browse,浏览你所保存的r语言包,选中后,点击install,即可安装。
使用rpart包
# 导入构建决策树所需要的库   
library("rpart")
library("rpart.plot")
library("survival")
#--------------------------------------------------------------------------#
# A查看本次构建决策树所用的数据源  stagec
stagec
# 通过 rpart 函数构建决策树
fit <- rpart(Surv(pgtime,pgstat)~age+eet+g2+grade+gleason+ploidy,stagec,method="exp")
# 查看决策树的具体信息
print(fit)
printcp(fit)
# 绘制构建完的决策树图
plot(fit, uniform=T, branch=0.6, compress=T)
text(fit, use.n=T)
# 通过 prune 函数剪枝
fit2 <- prune(fit, cp=0.016)
# 绘制剪枝完后的决策树图
plot(fit2, uniform=T, branch=0.6, compress=T)
text(fit2, use.n=T)
#-------------------------------------------------------------------------#
#B(rpart包)使用TH.data包中的bodyfat数据集
str(TH.data::bodyfat)
dim(TH.data::bodyfat)
head(TH.data::bodyfat)
# 分别选取训练样本(70%)和测试样本(30%)
 set.seed(1234)
 indexa <- sample(2,nrow(TH.data::bodyfat),replace = TRUE,prob=c(0.7,0.3))
 bodyfat_train <- TH.data::bodyfat[indexa==1,]
 bodyfat_test <- TH.data::bodyfat[indexa==2,]
# 使用age、waistcirc等五个变量进行决策树分类
myFormulaa <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth
# minsplit为最小分支节点数
bodyfat_rpart <- rpart(myFormulaa, data = bodyfat_train,  control = rpart.control(minsplit = 10))
# cptable: a matrix of information on the optimal prunings based on a complexity parameter.
 print(bodyfat_rpart$cptable)
 # 输出具体的决策树模型结果
 bodyfat_rpart
 # 可视化展示
 rpart.plot::rpart.plot(bodyfat_rpart)
 # 对决策树进行剪枝处理(prune),防止过度拟合
 opt <- which.min(bodyfat_rpart$cptable[,"xerror"])
 cp <- bodyfat_rpart$cptable[opt, "CP"]
 bodyfat_prune <- prune(bodyfat_rpart, cp = cp)
 plot(bodyfat_prune)
 text(bodyfat_prune,use.n=T)
 # 使用调整过后的决策树进行预测
 DEXfat_pred <- predict(bodyfat_prune, newdata=bodyfat_test)
 xlim <- range(TH.data::bodyfat$DEXfat)
 plot(DEXfat_pred ~ DEXfat, data=bodyfat_test, xlab="Observed", ylab="Predicted", ylim=xlim, xlim=xlim)
 # 为图形添加回归线,点的分布越靠近该线,则表示使用算法预测的精度越高
 abline(a=0,b=1)
使用party包
# 载入所用的包,使用ctree()函数
library(party)
#本次构建决策树所用的数据源 iris
str(iris)
set.seed(1234)
#分别选取训练样本(70%)和测试样本(30%)
indexb <- sample(2, nrow(iris), replace = TRUE, prob = c(0.7,0.3))
traindata <- iris[indexb == 1,]
testdata <- iris[indexb == 2,]
# 构建模型
myFormulab <- Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
iris_ctree <- ctree(myFormulab, data=traindata)
# 决策树模型的判断结果
table(predict(iris_ctree), traindata$Species)
# 输出具体的决策树模型结果
print(iris_ctree)
# 可视化展示
plot(iris_ctree)
plot(iris_ctree,type='simple')
# predict on test data
testpred <- predict(iris_ctree,newdata=testdata)
table(testpred,testdata$Species)
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23