
r语言做决策树代码实现
0.节点和结点的区别:节点为两线相交,不为终点;而结点为两线相交为终点,没有延伸;
1.分支节点:它指向其他的节点,所以是度不为0的节点。 vs 叶子结点:度为0的结点
2.度:结点拥有的子树数;就是说这个结点下面有几条分支
3.树的深度:树有几层
4.10折交叉验证:常用的测试算法准确性的方法。
将数据集分成10份,轮流将其中9份作为训练数据,1份作为测试数据,进行试验
每次试验都会得出相应的正确率,10次结果的正确率取平均值就作为算法精度的估计,一般还需进行多次10折交叉验证,再求均值
为什么取10折?因为很多理论证明了10折是获得最好误差估计的恰当选择。
#第1步:工作目录和数据集的准备
setwd("C:/Users/IBM/Desktop/170222分类树建模/2.23建模")#设定当前的工作目录,重要!
audit2<-read.csv("model2.csv",header=T)
str(audit2) #转成字符串类型的
#第2步:做训练集和测试集
set.seed(1)
sub<-sample(1:nrow(audit2),round(nrow(audit2)*2/3))
length(sub)
data_train<-audit2[sub,]#取2/3的数据做训练集
data_test<-audit2[-sub,]#取1/3的数据做测试集
dim(data_train)#训练集行数和列数13542 23
dim(data_test) #测试集的行数和列数6771 23
table(data_train$是否转化) #看该列分布的
table(data_test$是否转化)
#做决策树模型。首先对树参数进行设置,再建模
## rpart.control对树进行一些设置
## xval是10折交叉验证
## minsplit是最小分支节点数,这里指大于等于20,那么该节点会继续分划下去,否则停止
## minbucket:叶子节点最小样本数,这里设置100,可以调参
## maxdepth:树的深度
## cp全称为complexity parameter,指某个点的复杂度,对每一步拆分,模型的拟合优度必须提高的程度
#加载程序包和一些参数设定
library(rpart)
ct<-rpart.control(xval=10,minsplit=20,minbucket=150,cp=0.00017)
#rapart包中的raprt函数来做决策树
#na.action:缺失数据的处理,默认为删因变量缺失保留自变量缺失
#method:树的末端数据类型选择相应的变量分割方法:
# 连续性method=“anova”,离散型method=“class”,计数型method=“poisson”,生存分析型method=“exp”
#parms:用来设置三个参数:先验概率、损失矩阵、分类纯度的度量方法(gini和information)
#第3步:建模,观察模型结果
library(rpart)
tree.both<-rpart(as.factor(是否转化)~ .,data=data_train,method='class',minsplit=20,minbucket=150,cp=0.00017)
summary(tree.both)
tree.both$variable.importance
printcp(tree.both)
plotcp(tree.both,lwd=2)
#第4步:画决策树
#画决策树第1种方法,画出来的树比较简单
par(mfrow=c(1,3))
plot(tree.both)
text(tree.both,use.n=T,all=T,cex=0.9)
#画决策树第2种方法,画出来的树稍微好看些
library(rpart.plot)
rpart.plot(tree.both,branch=1,shadow.col="gray",box.col="green",border.col="blue",split.col="red",split.cex=1.2,main="决策树")
#第5步:剪枝
#rpart包提供了一种剪枝方法--复杂度损失修剪的修剪方法
#printcp这个函数会告诉你分裂到的每一层,对应的cp是多少,平均相对误差是多少
#xerror:交叉验证的估计误差;xstd:标准误差;xerror±xstd平均相对误差
printcp(tree.both)
#我们使用具有最小交叉验证误差的cp
cp=tree.both$cptable[which.min(tree.both$cptable[,"xerror"]),"CP"]
cp #cp=0.00049
#第6步:剪枝之后的树再画图
tree.both2<-prune(tree.both,cp=tree.both$cptable[which.min(tree.both$cptable[,"xerror"]),"CP"])
summary(tree.both2)
tree.both2$variable.importance
printcp(tree.both2)
plotcp(tree.both2,lwd=2)
library(rpart.plot)
rpart.plot(tree.both2,branch=1,shadow.col="gray",box.col="green",border.col="blue",split.col="red",split.cex=1.2,main="决策树")
#第7步:输出规则。剪枝后的决策树规则,从规则中再发现规律
library(rattle)
asRules(tree.both2)
#第8步:在测试集上做预测
library(pROC)
pred.tree.both<-predict(tree.both,newdata=data_test)
#第9步,看测试的效果,预测正确的有多少,预测错误的有多少
predictScore<-data.frame(pred.tree.both)
rownames(predictScore) #看这个矩阵行的名字
colnames(predictScore)#看这个矩阵列的名字
predictScore$是否转化<-'ok' #在预测的矩阵后面多加一列‘是否转化’2,全部都是2
predictScore[predictScore$FALSE.>predictScore$TRUE.,][,"是否转化"]=FALSE #如果false的概率大于true的概率,那么判断为false
predictScore[predictScore$FALSE.<=predictScore$TRUE.,][,"是否转化"]=TRUE
n<-table(data_test$是否转化,predictScore$是否转化)
n #看分布情况
percantage<-c(n[1,1]/sum(n[1,]),n[2,2]/sum(n[2,]))
percantage
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10