汽车企业缺失的数据管理及应用
缺乏明确的数据管理和应用系统性规划
虽然中国汽车行业在近年呈现出爆发性的增长态势,汽车产业成为国民经济的绝对支柱型产业,但广大的汽车企业普遍缺乏对数据管理和应用的系统性规划,即便是大型的汽车集团企业和合资企业,在这个方面也没有特别出色的表现。
究其原因,主要有以下几点:缺乏对数据管理和应用价值的深入认识,“科学决策,精细化数字管理”的道理谁都能明白,但是了解其核心价值和方法论的却寥寥无几。产业超常规的发展,企业的运营管理也始终处于未稳定状态,计划往往赶不上变化,朝令夕改的局面也限制了数据管理和应用的规划和落实。企业内部信息流的管理远比资金流和物流管理复杂,而数据管理,究其根本是人、系统、管理体系三者的结合,缺一则废。重商主义的风潮往往导致企业运营的结果导向,数据管理和应用的过程管理价值很难进行精确的测度,也限制了企业级规划的大规模推进。
汽车企业需要建立短、中、长期的数据管理和应用规划,并在企业文化、流程制度和系统建设上加以配合。落实到具体的内容上,便是数据的整合和质量管理,数据分析、挖掘和商业智能,以及在经营决策和具体业务环节(如营销)上的实例应用。
信息系统众多,但信息孤岛化严重
信息系统众多,源自原始系统规划的自发性;而信息孤岛则源自于传统分工式管理的劣根性,相关的概念和解决方案已在世多年,但仍然无法在汽车企业大规模地得以改善。汽车企业各个职能业务所使用的CRM、财务、HR、ERP、SCM等业务系统,经销店端使用的DMS系统,以及销售、售后、市场,财务、汽车金融等各部门的业务子系统等(如大客户管理、金融保险、二手车、保修、零部件系统),在诞生伊始就背离了“整体规划、分步实施”的大原则,功能和应用相互独立、技术和平台兼容性差,使得系统之间数据的共享和整体应用成为难题。
随着企业规模的不断扩大,诸多的IT系统将成为企业级的负担,相关的投入也会呈现出滚雪球般的增长。更为要命的是,企业的各级人员都无法从单一的视角来维护、管理和利用相关的数据;业务部门间的数据壁垒大量存在,跨业务主题分析和研究操作难度极大,经营决策不能做到及时和准确,具体的业务应用也不能呈现出完整的科学效应。
忽视长期的数据质量管理
任何的数据系统都不应只是一个IT系统,它们需要人的管理,需要流程制度的配合,才能充分发挥其潜在价值。缺乏了后两者,数据的质量也无从保障,数据也仅仅是“垃圾和黄金的混合物”。大多数汽车企业对于数据质量的管理尚未达到一个可持续发展的程度,仅有的一些数据质量管理项目也往往是“头痛医头、脚痛医脚”。
具体到实际业务,汽车企业往往缺乏:企业级的数据整合和主数据管理,长期的数据质量评估,针对经销商(作假)数据的管理,大规模的数据整理、清洗、维护和保鲜。
这里特别强调一下经销商的数据管理:一方面是经销商出于各种目的(如获得更高的满意度得分)而对原始销售和售后数据作假,汽车企业必须通过一定的手段对这种现象进行判别和规制;另外一方面是经销商集团的不断成长和壮大,往往要部署多个厂商的业务系统,经销商集团内部也需要对自己的数据进行企业级整合和数据质量管理,目前行业内罕有成功案例。
数据分析不能支持经营决策和业务应用
由于汽车企业针对数据分析和应用的目的性不强,缺乏必要的人才、平台和分析方法论,导致其在经营决策和业务应用的科学性方面,远远落后于IT、电信、金融等主流行业,数据分析流于大量的、重复的、简单体力劳动式的、应急性的业务报表。
在这个方面,汽车企业普遍缺乏科学决策、数据说话的企业文化内核,数据和信息还没有渗入到日常的工作与管理当中去;普遍缺乏企业级的和部门级的管理决策支持系统,或者商业智能系统,不能实现数据的有效、及时汇总和分析,更谈不上深度的业务模型应用了;同时,汽车企业也无法像电信、金融等行业一样,针对海量数据进行大规模的数据挖掘工作,进而建立针对不同业务主题(尤其是营销主题)的模型应用了。
数据的业务应用流于简单和形式
由于以上诸多内容的缺失,导致中国汽车企业的数据业务应用普遍简单而粗放,以汽车营销应用为例:CRM的理念尚无法深入贯彻到汽车企业营销链条当中,这一方面是由于经销商销售模式的限制,一方面是由于相关的数据和应用体系尚未完善,更重要的是相关的理念和业务应用还未被广大的汽车营销人深入认识。针对外部数据,汽车企业往往愿意通过数据库营销的方式简单地获取销售线索;而针对内部客户数据,汽车企业则常常采取定期的直邮、EDM、SMS等方式来维护客户关系。这些应用不过是客户关系管理当中的一些环节应用,而如何进行客户数据的整合、分析建模,如何甄别处在不同客户生命周期(如潜在客户、购买客户、成熟客户、摇摆客户、流失客户、挽回客户等)当中的客户需求,如何针对特定客户群落设计精准的营销和维系方案并进行规模化的实施,才是今后汽车营销人重点考虑和业务方向。
在整体业务规划、系统和整合、数据质量管理、经营决策支持、业务应用这五个方面,中国的汽车企业还有诸多的缺失和不足,还有很长远的道路要走,以迎接一个基于数据的科学化管理和应用时代的到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10