区块链技术发展现状与展望
区块链技术起源于2008年由化名为 “中本聪” (Satoshi Nakamoto)的学者在密码学邮件组发表的奠基性论文《比特币:一种点对点电子现金系统》。近两年来,区块链技术的研究与应用呈现出爆发式增长态势,被认为是继大型机、个人电脑、互联网、移动/社交网络之后计算范式的第五次颠覆式创新,是人类信用进化史上继血亲信用、贵金属信用、央行纸币信用之后的第四个里程碑。区块链技术是下一代云计算的雏形,有望像互联网一样彻底重塑人类社会活动形态,并实现从目前的信息互联网向价值互联网的转变。区块链的技术特点
区块链具有去中心化、时序数据、集体维护、可编程和安全可信等特点。 去中心化:区块链数据的验证、记账、存储、维护和传输等过程均是基于分布式系统结构,采用纯数学方法而不是中心机构来建立分布式节点间的信任关系,从而形成去中心化的可信任的分布式系统; 时序数据:区块链采用带有时间戳的链式区块结构存储数据,从而为数据增加了时间维度,具有极强的可验证性和可追溯性; 集体维护:区块链系统采用特定的经济激励机制来保证分布式系统中所有节点均可参与数据区块的验证过程(如比特币的“挖矿”过程),并通过共识算法来选择特定的节点将新区块添加到区块链; 可编程:区块链技术可提供灵活的脚本代码系统,支持用户创建高级的智能合约、货币或其它去中心化应用; 安全可信:区块链技术采用非对称密码学原理对数据进行加密,同时借助分布式系统各节点的工作量证明等共识算法形成的强大算力来抵御外部攻击、保证区块链数据不可篡改和不可伪造,因而具有较高的安全性。区块链与比特币 比特币是迄今为止最为成功的区块链应用场景,区块链技术为比特币系统解决了数字加密货币领域长期以来所必需面对的双重支付问题和拜占庭将军问题。与传统中心机构(如中央银行)的信用背书机制不同的是,比特币区块链形成的是软件定义的信用,这标志着中心化的国家信用向去中心化的算法信用的根本性变革。近年来,比特币凭借其先发优势,目前已经形成体系完备的涵盖发行、流通和金融衍生市场的生态圈与产业链,这也是其长期占据绝大多数数字加密货币市场份额的主要原因。区块链的发展脉络与趋势
区块链技术是具有普适性的底层技术框架,可以为金融、经济、科技甚至政治等各领域带来深刻变革。按照目前区块链技术的发展脉络,区块链技术将会经历以可编程数字加密货币体系为主要特征的区块链1.0模式,以可编程金融系统为主要特征的区块链2.0模式和以可编程社会为主要特征的区块链3.0模式。然而,上述模式实际上是平行而非演进式发展的,区块链1.0模式的数字加密货币体系仍然远未成熟,距离其全球货币一体化的愿景实际上更远、更困难。目前,区块链领域已经呈现出明显的技术和产业创新驱动的发展态势,相关学术研究严重滞后、亟待跟进。区块链的基础模型与关键技术
一般说来,区块链系统由数据层、网络层、共识层、激励层、合约层和应用层组成。其中,数据层封装了底层数据区块以及相关的数据加密和时间戳等技术;网络层则包括分布式组网机制、数据传播机制和数据验证机制等;共识层主要封装网络节点的各类共识算法;激励层将经济因素集成到区块链技术体系中来,主要包括经济激励的发行机制和分配机制等;合约层主要封装各类脚本、算法和智能合约,是区块链可编程特性的基础;应用层则封装了区块链的各种应用场景和案例。该模型中,基于时间戳的链式区块结构、分布式节点的共识机制、基于共识算力的经济激励和灵活可编程的智能合约是区块链技术最具代表性的创新点。区块链技术的应用场景
区块链技术不仅可以成功应用于数字加密货币领域,同时在经济、金融和社会系统中也存在广泛的应用场景。根据区块链技术应用的现状,本文将区块链目前的主要应用笼统地归纳为数字货币、数据存储、数据鉴证、金融交易、资产管理和选举投票共六个场景:数字货币:以比特币为代表,本质上是由分布式网络系统生成的数字货币,其发行过程不依赖特定的中心化机构。数据存储:区块链的高冗余存储、去中心化、高安全性和隐私保护等特点使其特别适合存储和保护重要隐私数据,以避免因中心化机构遭受攻击或权限管理不当而造成的大规模数据丢失或泄露。数据鉴证:区块链数据带有时间戳、由共识节点共同验证和记录、不可篡改和伪造,这些特点使得区块链可广泛应用于各类数据公证和审计场景。例如,区块链可以永久地安全存储由政府机构核发的各类许可证、登记表、执照、证明、认证和记录等。金融交易:区块链技术与金融市场应用有非常高的契合度。区块链可以在去中心化系统中自发地产生信用,能够建立无中心机构信用背书的金融市场,从而在很大程度上实现了“金融脱媒”;同时利用区块链自动化智能合约和可编程的特点,能够极大地降低成本和提高效率。资产管理:区块链能够实现有形和无形资产的确权、授权和实时监控。无形资产管理方面已经广泛应用于知识产权保护、域名管理、积分管理等领域;有形资产管理方面则可结合物联网技术形成“数字智能资产”,实现基于区块链的分布式授权与控制。选举投票:区块链可以低成本高效地实现政治选举、企业股东投票等应用,同时基于投票可广泛应用于博彩、预测市场和社会制造等领域。区块链技术的现存问题
安全性威胁是区块链迄今为止所面临的最重要的问题。其中,基于PoW共识过程的区块链主要面临的是51%攻击问题,即节点通过掌握全网超过51%的算力就有能力成功篡改和伪造区块链数据。其他问题包括新兴计算技术破解非对称加密机制的潜在威胁和隐私保护问题等。 区块链效率也是制约其应用的重要因素。区块链要求系统内每个节点保存一份数据备份,这对于日益增长的海量数据存储来说是极为困难的。虽然轻量级节点可部分解决此问题,但适用于更大规模的工业级解决方案仍有待研发。比特币区块链目前每秒仅能处理7笔交易,且交易确认时间一般为10分钟,这极大地限制了区块链在大多数金融系统高频交易场景中的应用。 PoW共识过程高度依赖区块链网络节点贡献的算力,这些算力主要用于解决SHA256哈希和随机数搜索,除此之外并不产生任何实际社会价值,因而一般意义上认为这些算力资源是被“浪费”掉了,同时被浪费掉的还有大量的电力资源。如何能有效汇集分布式节点的网络算力来解决实际问题,是区块链技术需要解决的重要问题。 区块链网络作为去中心化的分布式系统,其各节点在交互过程中不可避免地会存在相互竞争与合作的博弈关系,例如比特币矿池的区块截留攻击博弈等。区块链共识过程本质上是众包过程,如何设计激励相容的共识机制,使得去中心化系统中的自利节点能够自发地实施区块数据的验证和记账工作,并提高系统内非理性行为的成本以抑制安全性攻击和威胁,是区块链有待解决的重要科学问题。智能合约与区块链技术
智能合约是一组情景-应对型的程序化规则和逻辑,是部署在区块链上的去中心化、可信共享的程序代码。通常情况下,智能合约经各方签署后,以程序代码的形式附着在区块链数据(例如一笔比特币交易)上,经P2P网络传播和节点验证后记入区块链的特定区块中。智能合约封装了预定义的若干状态及转换规则、触发合约执行的情景(如到达特定时间或发生特定事件等)、特定情景下的应对行动等。区块链可实时监控智能合约的状态,并通过核查外部数据源、确认满足特定触发条件后激活并执行合约。 智能合约对于区块链技术来说具有重要的意义。一方面,智能合约是区块链的激活器,为静态的底层区块链数据赋予了灵活可编程的机制和算法,并为构建区块链2.0和3.0时代的可编程金融系统与社会系统奠定了基础;另一方面,智能合约的自动化和可编程特性使其可封装分布式区块链系统中各节点的复杂行为,成为区块链构成的虚拟世界中的软件代理机器人,这有助于促进区块链技术在各类分布式人工智能系统中的应用,使得基于区块链技术构建各类去中心化应用(Decentralized application, Dapp)、去中心化自治组织(Decentralized Autonomous Organization, DAO)、去中心化自治公司(Decentralized Autonomous Corporation, DAC)甚至去中心化自治社会(Decentralized Autonomous Society, DAS)成为可能。 区块链和智能合约技术的主要发展趋势是由自动化向智能化方向演化。现存的各类智能合约及其应用的本质逻辑大多仍是根据预定义场景的“ IF-THEN”类型的条件响应规则,能够满足目前自动化交易和数据处理的需求。未来的智能合约应具备根据未知场景的“ WHAT-IF”推演、计算实验和一定程度上的自主决策功能,从而实现由目前“自动化”合约向真正的“智能”合约的飞跃。区块链驱动的平行社会
近年来,基于CPSS(Cyber-Physical-Social Systems)的平行社会已现端倪,其核心和本质特征是虚实互动与平行演化。区块链是实现CPSS平行社会的基础架构之一,其主要贡献是为分布式社会系统和分布式人工智能研究提供了一套行之有效的去中心化的数据结构、交互机制和计算模式,并为实现平行社会奠定了坚实的数据基础和信用基础。 就数据基础而言,管理学家爱德华戴明曾说过:除了上帝,所有人必须以数据说话。然而在中心化社会系统中,数据通常掌握在政府和大型企业等“少数人”手中,为少数人“说话”,其公正性、共识性甚至安全性可能都无法保证。区块链数据则通过高度冗余的分布式节点存储,掌握在“所有人”手中,能够做到真正的“数据民主”。就信用基础而言,中心化社会系统因其高度工程复杂性和社会复杂性而不可避免地会存在“默顿系统”的特性,即不确定性、多样性和复杂性,社会系统中的中心机构和规则制定者可能会因个体利益而出现失信行为;区块链技术有助于实现软件定义的社会系统,其基本理念就是剔除中心化机构、将不可预测的行为以智能合约的程序化代码形式提前部署和固化在区块链数据中,事后不可伪造和篡改并自动化执行,从而在一定程度上能够将“默顿”社会系统转化为可全面观察、可主动控制、可精确预测的“牛顿”社会系统。 ACP(人工社会Artificial Societies、计算实验Computational Experiments和平行执行ParallelExecution)方法是迄今为止平行社会管理领域唯一成体系化的、完整的研究框架,是复杂性科学在新时代平行社会环境下的逻辑延展和创新。 ACP方法可以自然地与区块链技术相结合,实现区块链驱动的平行社会管理。首先,区块链的P2P 组网、分布式共识协作和基于贡献的经济激励等机制本身就是分布式社会系统的自然建模,其中每个节点都将作为分布式系统中的一个自主和自治的智能体(agent)。随着区块链生态体系的完善,区块链各共识节点和日益复杂与自治的智能合约将通过参与各种形式的Dapp,形成特定组织形式的DAC和DAO,最终形成DAS,即ACP中的人工社会。其次,智能合约的可编程特性使得区块链可进行各种“ WHAT-IF” 类型的虚拟实验设计、场景推演和结果评估,通过这种计算实验过程获得并自动或半自动地执行最优决策。最后,区块链与物联网等相结合形成的智能资产使得联通现实物理世界和虚拟网络空间成为可能,并可通过真实和人工社会系统的虚实互动和平行调谐实现社会管理和决策的协同优化。不难预见,未来现实物理世界的实体资产都登记为链上智能资产的时候,就是区块链驱动的平行社会到来之时。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21