机器学习入门之多项式曲线拟合
机器学习和人工智能是最近几年特别火的领域,比如微软小冰、微软cortana、苹果siri、谷歌Now和alphaGo都使用了机器学习,使得他们的产品变得更加智能。
当然除了这些科技巨头,其实我们日常中也可能会使用到人工智能的产品,比如最常见的就是app上的个性化推荐,通过多维度分析用户的个性,给用推荐合适的内容,当然我个人是很讨厌推荐的,基本不点开看。下面我将分为两个部分来阐述多项式曲线拟合。
什么是多项式曲线拟合
如何评估拟合结果
首选我们以一个回归的例子展开阐述,现在假设给定一个训练集。这个训练集由x的N次观测组成,写作 ≡ (x1,…,xN)T,伴随这
对应的t的观测值,记作 ≡ (t1, …, tN )T,图1展示了由N = 10个数据点组成的图像。图1.2中 的输入数据集合
通过选择xn(n = 1, … , N)的值来生成。这些xn均匀分布在区间[0, 1],目标数 据集
的获得方式是:首先计算函数sin(2πx)的对应的值,然后给每个点增加一个小的符合高斯分布的随机噪声。
现在我们输入一个新值x来预测相应的t值。首选我们需要通过训练得出的多项式为y(x,w),y(x,w)是一个多项式:
y(x,w)是曲线多项式,它是一个逼近我们真实曲线的多项式。
在上式y(x,w)中M是多项式的阶数(order),xj表示x的j次幂。多项式系数w0,…,wM整体记作向量w。
注意,虽然多项式函数y(x, w)是x的一个非线性函数,它是系数w的一个线性函数。通过最小化误差函数 (error
function)来衡量了对于任意给定的w值,函数y(x, w)与训练集数据的差别。如图所示:
那么我可以知道误差函数为:
其中1/2是为了方便计算引入的。
我们可以通过选择使得E(w)尽量小的w来解决曲线拟合问题。由于误差函数是系数w的二次函数,因此它关于系数的导数是w的线性函数,所以误差函数的最小值有一个唯一解,记 作w∗,可以用解析的方式求出。最终的多项式函数由函数y(x, w∗)给出。
从图中我们可以看出M=0和M=1拟合效果很差,我们称之为欠拟合,M=3拟合看起来和真实
的曲线差不多,但是当M=9的时候,拟合曲线激烈震荡,我们称之为过拟合。如此看来,曲线拟合的泛化性和M的取值有直接的关系,而M得值我们称之为模型特征个数,比如说房子的价格和房子面积有关系,和房子方向(南北向)有关系,那么面积是房子价格数学模型中的一个特征,房子方向也是一个特征。
为了定量考察泛化性和M之间的关系,我们额外考虑一个测试集,这个测试集由100个数据 点组成,这100个数据点的生成方式与训练集的生成方式完全相同,但是在目标值中包含的随机 噪声的值不同。对于每个不同的M值,我用用根均方(RMS)来表示测试误差:
其中,除以N让我们能够以相同的基础对比不同大小的数据集,平方根确保了E_RMS与目标 变量t使用相同的规模和单位进行度量。下图展示了不同M值和E_RMS的关系:
从中我们可以看到,M=3-8测试误差和训练误差都比较低。能够取得较好的效果。
对已一个给定的模型复杂度,当数据集的规模增加时,过拟合问题变得不那么严重。另一种表
述方式是,数据集规模越大,我们能够用来拟合数据的模型就越复杂(即越灵活)。一个粗略的启发是,数据点的数量不应该小于模型的可调节参数的数量的若干倍(比如5或10)。下图是使用M
= 9的多项式对M = 15个数据点(左图)和N = 100个数据点(右图)通过最小化平方和
误差函数的方法得到的解。我们看到增大数据集的规模会减小过拟合问题。
因此,我们了解到增加数据可以减小过拟合问题。但是我们又引来新的问题,那就是不得不根据可得到的训练集的规模限制参数的数量。也可以说是根据待解决的问题的复杂性来选择模型的复杂性。我们可能期望建立相对复杂和灵活的模型,所以我们经常用来控制过拟合现象的一种技术是正则化(regularization)。这种技术涉及到给误差函数增加一个惩罚项,使得系数不会达到很大的值。这种惩罚项最简单的形式采用所有系数的平方和的形式。
其中∥w∥^2 ≡ wT w = w0^2 + w1^2 + … + wM^2 ,系数λ控制了正则化项相对于平方和误差项的重要性,被称之为正则化系数。通过引入正则化项可以减少过拟合的问题。下图是正则化系数对过拟合影响图:
使用正则化的误差函数,用M = 9的多项式拟合图中的数据集。其中正则化参数λ选择 了两个值,分别对应于ln λ = −18和ln λ = 0。因此引入正则化项也可以减少过拟合问题。
总结
在多项式虚线拟合过程中,我们遇到了两个问题,一个是欠拟合,一个是过拟合,对于欠拟合我们只需要增加参数(或者说特征)是拟合更加好,对于过拟合,我们提到了两种方式来解决,一个是增加数据,通过增加数据的方式增加引入更多的特征从而减少过拟合,另一种是增加正则化项。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07