信用卡通不过?用数据分析技术,带你深度解析信用卡评分体系
随着互联网金融时代的到来,信用评分体系显得越发重要,本文就解读信用卡评分体系是如何建立的。
客户信息涉及到很多因素,因此许多因素无法在机器学习模型中进行探讨,这里收集了大部分互联网金融公司在信用卡申请时能获取到的信息。
目标
1. 使用机器学习构建信用卡评分模型,获得自变量分箱结果;
2. 并由评分模型得出最优的cutoff值,并对模型进行评价;
3. 再由新的样本集对评分卡进行测试,输出预测结果。
数据
我使用了Kaggle的两个数据集。
Kaggle数据集链接:
https://www.kaggle.com/yuzijuan/credit-card-scoring/data
环境和工具:
Rstudio,plyr,rJava,smbinning,prettyR
我首先对两个数据集进行探索性分析,剔除掉无法纳入模型的变量,例如ID,取值为空的变量,取值仅为一类的变量等;再探索配偶收入变量问题时,由于值绝大部分为0,将该变量变为二分类变量,取值为有收入与无收入;针对异常值过大的变量,采用盖帽法,用99分位点值代替极大异常值,有1分位点值代替极小异常值等等方法,数据清洗完后,再用smbinning包进行cart分箱,带入评分卡模型,获得评分卡,最后将其运用到测试集上。
开始
首先,导入必要的库和数据集,进行探索性数据分析,并剔除掉无法纳入模型的变量。
导入库
导入数据
剔除无法纳入模型的变量
由于评分卡模型一般分数越高,表示信用越好,故需要将信用好的类别得分记为1,信用不好的类别得分记为0。
为更有效分箱,获取了因子型变量集factorval和数值型变量集numericval,分别进行分箱处理。
数值型变量分箱
为更有效进行数据处理,对异常值可以进行盖帽法处理,代码如下:
以年龄数值型变量举例说明,首先查看数据分布情况,由于是因变量为二分类,自变量为数值型,用t检验来检验两分布是否有显著性差别,有显著性差别才能进行分箱,否则分箱结果无意义。
分布情况如上图所示,可以对其进行盖帽法后再t检验和分箱处理。t检验的原假设为两分类组的均值相等,结果表明原假设被拒绝,认为两分布具有显著性差别,可以进行分箱。
用的是smbinning包,这个包中采用的是CART回归树进行属性划分,数值型用函数smbinning(),由树的结果可知,划分点为19,22,32,37,46、59六个值,划分为7个属性区间。
AGE的IV值为0.2004,对AGE的WOE值画图,得到分布呈现单调趋势,表明分箱结果良好,可以纳入模型。
用AGE进行分箱的代码如下:
类推其他连续变量。通过调用numericalval可知共有7个数值型变量,由于两个数值型变量取值过于集中,后续将作为分类变量处理,故得到5个变量的IV值。
因子型变量分箱
以性别分类变量举例说明,首先对性别变量中的异常值进行处理,这种类别变量一般将异常值归为多数这类。查看分布情况可知女性的守信情况似乎比男性好一些。性别变量的WOE值区分得也很明显。
在进行分箱之前同数值型变量一样,要检验两分布是否有显著性差别,由于因变量和自变量均为分类变量,故用卡方检验。原假设为两分布之间无显著性差别,卡方检验结果表明拒绝原假设,认为两样本有显著性差别,可以进行分箱。
分类变量分箱也采用的是smbinning包,不过smbinning包中就是用原分类值进行属性划分,未对划分属性处理,分类变量用的函数是smbinning.factor(),最后得到SEX的IV值为0.0274。具体执行代码如下:
再以配偶收入举例说明,这个变量原本是数值型变量,由于取值过于集中到0,故将该变量转化为分类型变量再处理,处理方式是将取值为0的作为无收入,将取值大于0的作为有收入。
得到混淆矩阵可以看出,有收入的似乎比无收入的守信情况好一些,WOE图的区别也较为明显。
通过卡方检验也可以看出,是否有收入对信用好否有显著性影响,可以进行分箱操作。最后分箱得到IV值为0.0206。具体代码如下:
类推到其他因子型变量,计算出得到所有变量的IV值,存入creditivs中。
建立评分卡
得到所有可分箱变量的IV值,一般认为IV值大于等于0.02的对构建评分卡具有一定的帮助,故以0.02为分界点得到满足条件的变量。最后纳入评分卡模型的变量分别是年龄、工作时长(月)、个人收入、性别、婚姻状态、是否有自用手机、配偶是否有收入。
最后7个自变量的IV值的分布情况如下,可以看到年龄、婚姻状态、工作时长、是否有自用手机这几个变量的IV值较大,表明这几个变量对预测结果影响较大。
数值型分箱变量用函数smbinning.gen(),因子型变量用函数smbinning.factor.gen(),可以生成分箱后的结果,分箱后生成的新列并因变量得到data2数据集,通过逻辑回归,建立评分卡模型。通过逻辑回归结果可以看出分箱后的变量都较为显著,表示分箱结果优良。
生成评分卡是用函数smbinning.scaling(),通过调节pdo,score,odds三个参数,使得评分卡最大值与最小值位于一个较好的范围。这里评分卡的区间为(389,888)。
最后保存为新的csv文件,评分卡就做好了。具体代码如下:
评分卡展示如下,points表示为评分卡的分值。如年龄在45岁的客户,得分为166分。
最后,你总得告诉领导或者同事,到底大于等于多少时,我们认为是好客户,这时还有最后一步,就是求cutoff值,将训练数据通过函数smbinning.scoring.gen()可以得到客户的得分,由于训练数据本身有是否违约这个变量,那么cutoff值有两种选择方式,第一种基于业务发展现状,即公司是需要盈利增收,还是公司需要控制风险,然后商议讨论选择一个cutoff值。下图为客户得分与客户违约的箱体图,1表示好客户,0表示坏客户,可以看出好客户的得分值会高于坏客户的得分值。
对客户得分与客户违约做t检验,检验结果表明,两分布具备显著性差别,可以认为好客户和坏客户的得分会有显著性差别。坏客户的得分集中在578分附近,好客户得分集中于620分附近。
第二种获得cutoff值的方式就是电脑自动计算最优cutoff值,用的函数smbinning.metrics(),从输出的报告可以看出,最优cutoff值为615,这样划分的话,ROC曲线的AUC值为0.657,不算特别优良,准确率(precision)达到87.8%。
具体执行代码如下:
预测
针对新样本,我选择用Excel工具获得信用评分,使用VLOOKUP函数可以很方便地得到想要的数据,评分展示如下,选择cutoff值为615,这里认为(600,620)的客户为关注客户,信用情况中等,620分以上的客户信用情况良好,600分以下的客户信用情况堪忧。
分别用!、√、×来表示中等、优良、较差的信用情况。
结语
本案例不足之处在于:
1. 未对职业代码、商店等级代码等信息进行提炼,可能会忽略掉一些有可能对模型有影响的变量。
2. Smbinning包在数值型变量分箱这一块很强大,但是对分类变量分箱结果不太尽如人意,可以考虑其他分箱方法。
3. 可以整合更多模型,从而提高预测准确率。
数据分析咨询请扫描二维码
数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22