R语言数据集行列互换技巧
现在给大家介绍的数据处理技巧是长转宽,也就相当于Excel中的转置,不过用R语言实现的长转宽还有数据合并的功能,自然比Excel强大多了。
这里给大家介绍4个函数,其中melt()、dcast()来自reshape2包,gather()、spread()来自tidyr包
一、宽转长——melt()、gather()
[python] view plain copy
mydata<-data.frame(
name=c("store1","store2","store3","store4"),
address=c("普陀区","黄浦区","徐汇区","浦东新区"),
sale2014=c(3000,2500,2100,1000),
sale2015=c(3020,2800,3900,2000),
sale2016=c(5150,3600,2700,2500),
sale2017=c(4450,4100,4000,3200)
)
#宽转长——melt
mydata1<-melt(
mydata,
id.vars=c("address","name"),#要保留的主字段
variable.name = "Year",#转换后的分类字段名称(维度)
value.name = "Sale" #转换后的度量值名称
)
输出结果
[python] view plain copy
> mydata1<-melt(
+ mydata,
+ id.vars=c("address","name"),#要保留的主字段
+ variable.name = "Year",#转换后的分类字段名称(维度)
+ value.name = "Sale" #转换后的度量值名称
+ )
> mydata1
address name Year Sale
1 普陀区 store1 sale2014 3000
2 黄浦区 store2 sale2014 2500
3 徐汇区 store3 sale2014 2100
4 浦东新区 store4 sale2014 1000
5 普陀区 store1 sale2015 3020
6 黄浦区 store2 sale2015 2800
7 徐汇区 store3 sale2015 3900
8 浦东新区 store4 sale2015 2000
9 普陀区 store1 sale2016 5150
10 黄浦区 store2 sale2016 3600
11 徐汇区 store3 sale2016 2700
12 浦东新区 store4 sale2016 2500
13 普陀区 store1 sale2017 4450
14 黄浦区 store2 sale2017 4100
15 徐汇区 store3 sale2017 4000
16 浦东新区 store4 sale2017 3200
再来看看gather()函数怎么用
[python] view plain copy
> #宽转长——gather
> mydata1<-tidyr::gather(
+ data=mydata,
+ key="Year",
+ value="sale",
+ sale2014:sale2017
+ )
> mydata1
name address Year sale
1 store1 普陀区 sale2014 3000
2 store2 黄浦区 sale2014 2500
3 store3 徐汇区 sale2014 2100
4 store4 浦东新区 sale2014 1000
5 store1 普陀区 sale2015 3020
6 store2 黄浦区 sale2015 2800
7 store3 徐汇区 sale2015 3900
8 store4 浦东新区 sale2015 2000
9 store1 普陀区 sale2016 5150
10 store2 黄浦区 sale2016 3600
11 store3 徐汇区 sale2016 2700
12 store4 浦东新区 sale2016 2500
13 store1 普陀区 sale2017 4450
14 store2 黄浦区 sale2017 4100
15 store3 徐汇区 sale2017 4000
16 store4 浦东新区 sale2017 3200
和melt()函数不同,gather()函数需要指定关键字段key,以及关键字段对应的值value,但是gather()函数更加好理解。
二、长转宽——dcast()和spread()
还是用上面的data1数据集,先来看看dcast()函数
[python] view plain copy
#长转宽——dcast
dcast(
data=mydata1,
name+address~Year
#左侧是要保留的字段,右侧是要分割的分类变量,列数等于表达式
#右侧分类变量的类别个数
)
[python] view plain copy
> #长转宽——dcast
> dcast(
+ data=mydata1,
+ name+address~Year
+ #左侧是要保留的字段,右侧是要分割的分类变量,列数等于表达式
+ #右侧分类变量的类别个数
+ )
Using sale as value column: use value.var to override.
name address sale2014 sale2015 sale2016 sale2017
1 store1 普陀区 3000 3020 5150 4450
2 store2 黄浦区 2500 2800 3600 4100
3 store3 徐汇区 2100 3900 2700 4000
4 store4 浦东新区 1000 2000 2500 3200
dcast()函数的使用规则需要琢磨下才能理解,大家好好看看注释部分,再来看看spread()
[python] view plain copy
#长转宽——spread
tidyr::spread(
data=mydata1,
key=Year,
value=sale
)
[python] view plain copy
> #长转宽——spread
> tidyr::spread(
+ data=mydata1,
+ key=Year,
+ value=sale
+ )
name address sale2014 sale2015 sale2016 sale2017
1 store1 普陀区 3000 3020 5150 4450
2 store2 黄浦区 2500 2800 3600 4100
3 store3 徐汇区 2100 3900 2700 4000
4 store4 浦东新区 1000 2000 2500 3200
直接调用tidyr::spread,需要指定关键字段key和对应的值value。
但是从理解上来看,我个人更喜欢tidyr包的函数,使用很清晰,大家可以根据实际情况自行选择,好啦,今天的分享结束,下次再见!
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21