数据科学家新手快速上道谨防5个陷阱
在数据科学家入门阶段,你不可避免会踩到一些雷区。这篇文章介绍了 Sébastien Foucaud 博士总结的新手数据科学家最容易犯的 5 个错误。博士已经有 20 多年带领学术界和应用行业年轻数据科学家的经验,可以帮读者朋友少走些弯路,为你的实际工作提供一些指导和帮助。话不多说,上清单!
1. 热衷于 Kaggle 竞赛
资料来源:kaggle.com
参加 Kaggle 竞赛可以锻炼你的数据科学职业技能。如果你懂决策树和神经网络那再好不过了。但实话告诉你吧,数据科学家的实际工作中用不着创建那么多的模型。请记住,一般情况下,你将花费 80%的时间对数据进行预处理,只有剩下的 20%用于构建模型。
数据科学家工作时间分布
参加 Kaggle 竞赛在很多方面都会对你很有帮助。但是,参加竞赛的时候,通常数据会被完美地清理干净,所以你可以花很多时间去调整模型。而在现实工作中很少出现这种情况,你必须从不同格式和命名的不同来源收集数据。
不要害怕脏活累活,一定要好好练习数据预处理技能,因为它将占据你 80%的工作时间。比如爬取图像或从 API 收集这些图像数据;从 Genius 收集歌词数据等。准备好解决特定问题所需的数据,然后将其输入你的笔记本并训练机器学习生命周期。精通数据预处理无疑将帮助你成为真正的数据科学家,并对你的公司产生直接影响。
2. 神经网络是“万能金丹”
深度学习模型在计算机视觉或自然语言处理领域优于其他机器学习模型。但他们也有明显的缺点。
神经网络对数据十分依赖。如果样本较少,通常用决策树或逻辑回归模型结果会更好。神经网络还是一个黑匣子。众所周知,它们难以解释和说明。如果产品所有者或管理者开始质疑模型的输出,你必须能够解释清楚模型的原理。这对于传统模型来说更容易一点。
我们有很多很棒的统计学习模型。自学这些知识,了解它们的优缺点,并根据用例的条件应用这些模型。除非你在计算机视觉或自然语音识别专业领域工作,否则很有可能传统机器学习算法才是最好用的模型。你很快就会发现,最简单的模型,如 Logistic 回归,才是最好用的模型。
来源: scikit-learn.org 算法备忘单
3. 机器学习是产品
机器学习在过去的十年中都被过度炒作,太多的创业公司吹嘘机器学习能够解决任何存在的问题。
来源:过去 5 年 Google 机器学习趋势
机器学习本身不应该是产品。机器学习是创建满足客户需求的产品的强有力的工具。在客户接收精准商品推荐方面,机器学习可以有所帮助。如果客户需要准确识别图像中的对象,机器学习也有用。企业通过向用户展示有价值的广告而获益,机器学习同样可以提供帮助。
作为数据科学家,你所制定的项目需要以客户的目标为主要优先事项。只有这样,你才能评估机器学习是否会帮到客户。
4. 混淆因果关系
大约 90%的数据是在过去几年中涌现的。随着大数据的出现,机器学习从业者能够接触到大量广泛的数据。有了这么多要评估的数据,学习模型发现随机相关性的概率随之增加。
上面的图片显示了美国小姐的年龄以及由蒸汽、热蒸气和发热物体导致的谋杀的总数。基于这些数据,算法将学习到美国小姐的年龄与特定物体导致的谋杀数量之间会互相影响的关系模型。然而,两个数据点实际上毫无关系,并且这两个变量对彼此都绝对没有任何可预测的影响。
在发现数据之间的关系时,将你的领域知识应用进去。这可能是相关性还是因果关系?回答这些问题是根据数据采取行动的关键。
5. 优化错误的参数
开发机器学习模型有一个敏捷的生命周期。首先,你要定义你的想法和关键参数。其次,你需要创建一个结果的原型。第三,你不断优化参数,直到你对它感到满意。
在构建机器学习模型时,请记住要手动进行错误分析。虽然这个过程乏味并耗力,但它会帮助你在接下来的迭代中有效地改进模型。
要点总结
• 练习数据管理技能
• 研究不同模型的优缺点
• 尽可能简化模型
• 检查你结论中的因果关系和相关性
• 优化最有用的参数
年轻数据科学家为公司创造了巨大的价值。他们刚刚学完在线课程,可以立刻为公司提供帮助。他们很多人通常是自学成才,因为很少有大学提供数据科学课程和学位,因此他们对此表现出巨大的决心和好奇心。他们对自己选择的领域充满热情,并渴望了解更多信息。但是,在热情满满的时候也不要盲目学习,谨防以上数据科学家新手会掉落的陷阱,会帮你少走很多弯路。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16