区块链是如何重塑广告和媒体领域的
数字广告欺诈是商业界的一个重大问题。事实上,广告欺诈是一个非常严重的问题,37%的受访广告客户会乐意支付额外费用,以确保他们所支付的流量能与一个真正的人联系在一起。
作为一个在互联网上建立了整个职业生涯的人,我已经意识到广告欺诈的每一步。这就是为什么我从来没有急于把钱投入到数字广告活动中,而宁愿走更长的路去想如何推动有机交通的原因。
当你知道这台机器坏了,干吗一直往里面装二角五分硬币呢?
尽管有大量盈利的业务是建立在套利网络流量和通过数字广告转换潜在客户的基础之上的,但该行业仍然需要进行大规模的改革。而阻止广告商防范欺诈的一个问题就是验证所支付行动的可信性:比如点击率、浏览量等。许多这些度量标准可以被机器自动化,并且很难知道哪些是真实的,哪些不是。
在过去的一年里,我被区块链技术迷住了。
我沉浸在其中。我已经为这个领域的新兴公司写了一些白皮书。我被请到了ShipChain、RedPen、MagnaChain等公司担任顾问。
从供应链跟踪到作者可信度,再到提供允许开发人员在一个公共区块链上启动当前和未来游戏的软件开发工具包,用例是无穷无尽的——我真的相信,我们正在目睹下一个伟大的技术进步。但我认为迫切需要关注的一个用例是数字广告欺诈。而区块链技术则是解决一个看似不可能解决的问题的方法。
以下是PPC Protect提供的一些让人震惊的统计数据:
广告欺诈统计
·广告欺诈僵尸网络“变色龙”每月花费广告客户600万美元以上(Spider.io,2016)。
·2016年,营销人员因数字广告欺诈而损失了72亿美元(WhiteOps,2016)。
·在5个为广告服务的网站中,就有1个是骗子(The Verge,2017)。
·每花3美元在数字广告上,有1美元就是欺诈(Adage.com,2015)。
·全年的欺诈程度并不一致。无论何时何地,只要数字广告的需求超过了供应,就会有人提出欺诈。(WhiteOps,2017)
·2017年,美国品牌将因广告欺诈损失65亿美元(营销周刊,2017)
·综合广告科学公司(Integral Ad Science)检查的显示广告发现,8.3%的印象都是虚假的(Integral Ad Science,2016)。
广告网络
目前,广告商和媒体公司倾向于使用广告网络来寻找广告,广告网络将建立一个客户和媒体来源的书,收集大量的广告预付款,然后通过媒体来源监控广告的放置和表现。
Google AdSense是这些提供者中最大的,但往往支付较少而且更容易访问。其他的广告网络专注于某些类型的内容或公司。在这个过程中,他们都会占用广告支出中的很大一部分。
当你思考区块链是如何在这里提供一个解决方案时,我告诉你这项技术可以使广告商和媒体公司合作。广告查看可以在区块链上进行验证,并通过智能合约自动地分散支付。
当然,该技术进入的障碍将是最初的市场采用和建设技术的速度要求。
媒体购买
传统的媒体购买是指在电视、广播、广告牌等方面购买广告,这需要某种形式的销售系统。。然而,传统媒体购买目前却被文书工作和其他低效率所拖累。
这里的解决方案是尽可能多地解决这些效率低下的问题——而不是在屏幕上记录发生过的同样事情。因为这并不会导致效率的提高,这只是对过时系统的小小升级而已。
我知道AdBit正在启动一个去块链解决方案,将传统媒体购买者直接与媒体提供商联系起来,用智能合约跟踪交易。这将让购买者更放心,因为他们知道自己实际上得到了所需的广告,并获得了关于竞选业绩的更多信息——这样做的目的是改善购买广告的体验,帮助媒体所有者更成功地将其受众货币化。
广告交易平台
虽然前两个解决方案侧重于将媒体所有者和广告购买者联系起来,但也存在分散的广告交易平台的潜力。在这个系统中,广告客户可以指定一个价格和人口,并让他们的广告自动托管。这将类似于Facebook的广告,但可以更好地为广告商量身定做,从而在更大的范围内找到客户。
建立一个分散的自治组织(DAO)来管理广告单元和广告代币的交易,可以帮助解决这个问题。这里最大的障碍之一是交易的速度要求。当某人查看一个广告空间时,广告客户需要在数秒内支付广告空间的费用。随着区块链速度的提高和分散化的交换经历更准确的测试,这将可能是一个主要的解决方案,可以帮助广告商和内容提供商获得更多的利润。
个人资料
许多区块链爱好者最喜欢的是能够在区块链上销售自己的数据。这里的想法是,像Facebook和Google这样的公司可以为你的收视率和信息获得报酬。然而,在区块链上,广告商可以直接支付用户的个人数据费用,而不是通过中介支付。
然而,这个用例需要一段时间才能建立起来。从长远来看,公司将需要从与中间商合作转变为处理每个用户的数据集。此外,还需要有足够的公司在平台上花钱,以激励用户参与。
随着区块链速度的提高和智能合约的改进,以及越来越多的公司采用区块链技术,在广告领域使用该技术也变的越来越有希望。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20