数据科学入门丨选Python还是R
对于想入门数据科学的新手来说,选择学Python还是R语言是一个难题,本文对两种语言进行了比较,希望能帮助你做出选择。
我是德勤的数据科学家主管,多年来我一直在使用Python和R语言,并且与Python社区密切合作了15年。本文是我对这两种语言的一些个人看法。
第三种选择
针对这个问题,Studio的首席数据科学家Htley Wickham认为,比起在二者中选其一,更好的选择是让两种语言合作。因此,这也是我提到的第三种选择,我在文本最后部分会探讨。
如何比较R和Python
对于这两种语言,有以下几点值得进行比较:
· 历史:
R和Python的发展历史明显不同,同时有交错的部分。
· 用户群体:
包含许多复杂的社会学人类学因素。
· 性能:
详细比较以及为何难以比较。
· 第三方支持:
模块、代码库、可视化、存储库、组织和开发环境。
· 用例:
根据具体任务和工作类型有不同的选择。
· 是否能同时使用:
在Python中使用R,在R中使用Python。
· 预测:
内部测试。
· 企业和个人偏好:
揭晓最终答案。
历史
简史:
ABC语言 - > Python 问世(1989年由Guido van Rossum创立) - > Python 2(2000年) - > Python 3(2008年)
Fortan语言 - > S语言(贝尔实验室) - > R语言问世(1991年由Ross Ihaka和Robert Gentleman创立) - > R 1.0.0(2000年) - > R 3.0.2(2013年)
用户群体
在比较Python与R的使用群体时,要注意:
只有50%的Python用户在同时使用R。
假设使用R语言的程序员都用R进行相关“科学和数字”研究。可以确定无论程序员的水平如何,这种统计分布都是真实。
这里回到第二个问题,有哪些用户群体。整个科学和数字社区包含几个子群体,当中存在一些重叠。
使用Python或R语言的子群体:
· 深度学习
· 机器学习
· 高级分析
· 预测分析
· 统计
· 探索和数据分析
· 学术科研
· 大量计算研究领域
虽然每个领域几乎都服务于特定群体,但在统计和探索等方面,使用R语言更为普遍。在不久之前进行数据探索时,比起Python,R语言花的时间更少,而且使用Python还需要花时间进行安装。
这一切都被称为Jupyter Notebooks和Anaconda的颠覆性技术所改变。
Jupyter Notebook:增加了在浏览器中编写Python和R代码的能力;
Anaconda:能够轻松安装和管理Python和R。
现在,你可以在友好的环境中启动和运行Python或R,提供开箱即用的报告和分析,这两项技术消除了完成任务和选择喜欢语言间的障碍。Python现在能以独立于平台的方式打包,并且更快地提供快速简单的分析。
社区中影响语言选择的另一个因素是“开源”。不仅仅是开源的库,还有协作社区对开源的影响。讽刺的是,Tensorflow和GNU Scientific Library等开源软件(分别是Apache和GPL)都与Python和R绑定。虽然使用R语言的用户很多,但使用Python的用户中有很多纯粹的Python支持者。另一方面,更多的企业使用R语言,特别是那些有统计学背景的。
最后,关于社区和协作,Github对Python的支持更多。如果看到最近热门的Python包,会发现Tensorflow等项目有超过3.5万的用户收藏。但看到R的热门软件包,Shiny、Stan等的收藏量则低于2千。
性能
这方面不容易进行比较。
原因是需要测试的指标和情况太多。很难在任何一个特定硬件上测试。有些操作通过其中一种语言优化,而不是另一种。
循环
在此之前让我们想想,如何比较Python与R。你真的想在R语言写很多循环吗?毕竟这两种语言的设计意图不太相同。
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"%load_ext rpy2.ipython"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def do_loop(u1):\n",
"\n",
" # Initialize `usq`\n",
" usq = {}\n",
"\n",
" for i in range(100):\n",
" # i-th element of `u1` squared into `i`-th position of `usq`\n",
" usq[i] = u1[i] * u1[i]\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"%%R\n",
"do_loop <- function(u1) {\n",
" \n",
" # Initialize `usq`\n",
" usq <- 0\n",
"\n",
" for(i in 1:100) {\n",
" # i-th element of `u1` squared into `i`-th position of `usq`\n",
" usq[i] <- u1[i]*u1[i]\n",
" }\n",
"\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.58 ms ± 42.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
]
}
],
"source": [
"%%timeit -n 1000\n",
"%%R\n",
"u1 <- rnorm(100)\n",
"do_loop(u1)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"36.9 µs ± 5.99 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
]
}
],
"source": [
"%%timeit -n 1000\n",
"u1 = np.random.randn(100)\n",
"do_loop(u1)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Python为0.000037秒,R为0.00158秒
包括加载时间和在命令行上运行:R需要0.238秒,Python需要0.147秒。强调,这并不是科学严谨的测试。
测试证明,Python的运行速度明显加快。通常这并没有太大影响。
除了运行速度外,对于数据科学家而言哪种性能更重要?两种语言之所以受欢迎是因为它们能被用作命令语言。例如,在使用Python时大多时候我们都很依赖Pandas。这涉及到每种语言中模块和库,以及其执行方式。
第三方支持
Python有PyPI,R语言有CRAN,两者都有Anaconda。
CRAN使用内置的install.packages命令。目前,CRAN上有大约1.2万个包。其中超过1/2的包都能用于数据科学。
PyPi中包的数量超过前者的10倍,约有14.1万个包。专门用于科学工程的有3700个。其中有些也可以用于科学,但没有被标记。
在两者中都有重复的情况。当搜索“随机森林”时,PyPi中可以得到170个项目,但这些包并不相同。
尽管Python包的数量是R的10倍,但数据科学相关的包的数量大致相同。
运行速度
比较DataFrames和Pandas更有意义。
我们进行了一项实验:比较针对复杂探索任务的执行时间,结果如下:
在大多数任务中Python运行速度更快。
来源:
http://nbviewer.jupyter.org/gist/brianray/4ce15234e6ac2975b335c8d90a4b6882
可以看到,Python + Pandas比原生的R语言DataFrames更快。注意,这并不意味着Python运行更快,Pandas 是基于Numpy用C语言编写的。
可视化
这里将ggplot2与matplotlib进行比较。
matplotlib是由John D. Hunter编写的,他是我在Python社区中最敬重的人之一,他也是教会我使用Python的人。
Matplotlib虽然不易学习但能进行定制和扩展。ggplot难以进行定制,有些人认为它更难学。
如果你喜欢漂亮的图表,而且无需自定义,那么R是不错的选择。如果你要做更多的事情,那么Matplotlib甚至交互式散景都不错。同样,R的ShinnyR能够增加交互性。
是否能同时使用
可能你会问,为什么不能同时使用Python和R语言?
以下情况你可以同时使用这两种语言:
· 公司或组织允许;
· 两种都能在你的编程环境中轻松设置和维护;
· 你的代码不需要进入另一个系统;
· 不会给合作的人带来麻烦和困扰。
一起使用两种语言的方法是:
· Python提供给R的包:如rpy2、pyRserve、Rpython等;
· R也有相对的包:rPython、PythonInR、reticulate、rJython,SnakeCharmR、XRPython
· 使用Jupyter,同时使用两者,例子如下:
之后可以传递pandas的数据框,接着通过rpy2自动转换为R的数据框,并用“-i df”转换:
来源:
http://nbviewer.jupyter.org/gist/brianray/734bd54f468d9a6db9171b2cfc98405a
预测
Kaggle上有人对开发者使用R还是Python写了一个Kernel。他根据数据发现以下有趣的结果:
· 如果你打算明年转向Linux,则更可能是Python用户;
· 如果你研究统计数据,则更可能使用R;如果研究计算机科学,则更可能使用Python;
· 如果你还年轻(18-24岁),则更可能是Python用户;
· 如果你参加编程比赛,则更可能是Python用户;
· 如果你明年想使用Android,则更可能是Python用户;
· 如果你想在明年学习SQL,则更可能是R用户;
· 如果你使用MS office,则更可能是R用户;
· 如果你想在明年使用Rasperry Pi,则更可能是Python用户;
· 如果你是全日制学生,则更可能是Python用户;
· 如果你使用的敏捷方法(Agile methodology),则更可能是Python用户;
· 如果对待人工智能,比起兴奋你更持担心态度,则更可能是R用户。
企业和个人偏好
当我与Googler和Stack Overflow的大神级人物Alex Martelli交流时,他向我解释了为什么Google最开始只官方支持少数几种语言。即使是在Google相对开发的环境中,也存在一些限制和偏好,其他企业也是如此。
除了企业偏好,企业中第一个使用某种语言的人也会起到决定性作用。第一个在德勤使用R的人他目前仍在公司工作,目前担任首席数据科学家。我的建议是,选择你喜欢的语言,热爱你选择的语言,起到领导作用,并热爱你的事业。
当你在研究某些重要的内容时,犯错是难以避免的。然而,每个精心设计的数据科学项目都为数据科学家留有一些空间,让他们进行实验和学习。重要的是保持开放的心态,拥抱多样性。
最后就我个人而言,我主要使用Python,之后我期待学习更多R的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29