CDA第八届认证考试数据报告发布
CDA数据分析师认证考试在每年的6月与12月最后一个周末进行,一年两次。第八届(2018年6月)CDA考试现已结束,本次考试在全国21所考试中心顺利进行,共完成LEVEL 1业务数据分析师,LEVEL 2建模分析师,LEVEL 2大数据分析师三门科目。经过简要数据统计分析,CDA 发布本次考试的通过率及考生数据报告:
CDA 第八届通过率:
解读:
本届考试通过率及成绩情况:
· LEVEL 1 通过率为64%(其中成绩A占比9%,成绩B占比24%,成绩C占比31%)。
· LEVEL 2 建模分析师通过率为51%(其中成绩A占比11%,成绩B占比14%,成绩C占比26%)
· LEVEL 2 大数据分析师通过率为49%(其中成绩A占比9%,成绩B占比17%,成绩C占比23%)。
较上一届(第七届)比较,LEVEL 1的通过率有所下降,LEVEL 2的通过率微上升。随着CDA认证的普及,考试内容的不断迭代和更新,越来越多的企业抢夺数据人才,作为行业人才选拔的参照标准,未来CDA考试的难度会有所加大,通过率趋势也会逐步下降。
CDA 第八届考生地区分布
解读:
此图是展示的本次考生的地区分布,其中北京、上海、广州的考生为TOP 3,西南地区(成都、重庆)的考生已超过了一些东部沿海城市,成都位居第四。数据分析的发展也逐渐深入到二三线城市,社会对数据分析师的需求也更加广阔。最新一届第九届考试加入了苏州和南宁两个考点,城市增加到23所。
CDA 第八届考生专业分布
解读:
根据考生的专业字段进行了整理分析,可以看出考生的专业分布比较分散,没有形成一边倒的情况,结合高校普遍缺乏数据相关专业的现状,可看出目前高校还无法培养出来专业的数据相关人才。考生里面,计算机专业占比最多,为15%,其次信息管理专业,占比12%,再是数学、统计学、应用科学,占比8%。来自于理工科专业的考生居多。
CDA 第八届考生工作年限情况
解读:
本次考试,考生具有工作经验的占比74%,无工作经验的占比26%。其中3年以上工作经验的考生占比最多,达到42%;工作2-3年的占比10%,1年以下工作经验的占比最少,为8%。此数据说明CDA认证更深入到具有多年工作经验的职场人士之中,工作经验越多的职场人士越需求CDA证书,其次是无工作的人士以此作为行业的敲门砖。
CDA 第八届考生岗位分布
解读:
此数据为综合了本届考试所有考生的岗位信息,进行了数据的整理和分类,删除了空缺值,得出了考生从业岗位的占比情况。可见数据分析岗位占比最多,从业的考生中超过了1/3的考生皆从事数据分析类岗位;管理类岗位其次,占比16%;工程师、程序员IT相关岗位随后,占比15%。之后为运营、产品、市场、销售等。基本证明了对于大多数还在数据类岗位的从业人员都急需一个专业能力的提升和认可,获得CDA证书也将是在自己现有职位往更高职位或平台的一个跳板。在IT岗的一些工程师欲获得CDA证书,转行从事数据岗位。而在管理、运营、产品、市场等岗位,也有一定的数据分析技能需求。
CDA 第八届考生 TOP 企业
解读:
以上是筛选了考生来自的所有企业单位,列出的TOP企业名单,包括外企、国企、私企、政府部门等。可看出这些500强企业,政府部门的员工也需要CDA技能,参与CDA认证考试,获得证书。也说明CDA持证人遍布在这些企业单位,接触着最前沿的数据技术。
综上
随着大数据和数据分析的普及,企业对数据人才的需求越来越理性,越来越明确,人才的竞争变得愈加激烈。以往来看,只要带点数据分析相关的技能或背景的人就可以称作数据分析师,且容易得到offer,但实际工作并不理想。因此企业期望能够得到一个鉴别人才的参照标准,为自己更好的筛选人才。
对于求职者来讲,现在社会对人才的定义更偏“T型”和“十字型”,社会对数据分析师的理解更深,要求更高,因此想要成为抢手的人才,更应该具备全面、系统的技能。于是越来越多专业的学生,在高校无法满足学得数据分析的情况下,获取CDA技能,选择从事数据相关职业;越来越多的职场人士在以往没有经过系统、专业训练的情况下,重新学习,考取CDA证书,甚至是世界500强企业的人士也渴望获得一个专业证书,为自己镀金。
因此,无论是企业还是人才,都期望有一个专业的参照标准,连接互通。CDA发展至今,也一直担任着企业和人才互相选择的桥梁角色,降低了交易成本,提高了沟通效率。同时CDA也提供着相应的系统培训、公开课,举办着俱乐部沙龙、行业峰会等活动,为社会培养并输送了更多的专业人才,推动着整个数据行业的良好发展。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
以上为第八届CDA数据分析师认证考试数据报告及总结,第九届认证考试现已开放报名,考试时间为2018年12月29日,唯一报名通道:www.cdaglobal.com
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31