如何透彻的掌握一门机器学习算法
机器学习算法都是一个个复杂的体系,需要通过研究来理解。学习算法的静态描述是一个好的开始,但是这并不足以使我们理解算法的行为,我们需要在动态中来理解算法。
机器学习算法的运行实验,会使你对于不同类型问题得出的实验结论,并对实验结论与算法参数两者的因果关系有一个直观认识。
在这篇文章中,你将会知道怎么研究学习一个机器学习算法。你将会学到5个简单步骤,你可以用来设计和完成你的第一个机器学习算法实验
你会发现机器学习实验不光是学者们的专利,你也可以;你也会知道实验是通往精通的必经之路,因为你可以从经验中学到因果关系的知识,这是其它地方学不到的。
什么是研究机器学习算法
当研究一个机器学习算法的时候,你的目标是找到可得到好结果的机器算法行为,这些结果是可以推广到多个问题或者多个类型的问题上。
你通过对算法状态做系统研究来研究学习机器学习算法。这项工作通过设计和运行可控实验来完成
一旦你完成了一项实验,你可以对结论作出解释和提交。这些结论会让你得以管窥在算法变化中因果关系。这就是算法行为和你获得的结论间的关系。
怎样研究学习机器学习算法
在这一部分,我们将学到5个简单的步骤,你可以通过它来研究学习一个机器算法
1.选择一个算法
选择一个你有疑问的算法
这个算法可能是你正在某个问题上应用的,或者你发现在其他环境中表现很好,将来你想使用
就实验的意图来说,使用现成的算法是有帮助的。这会给你一个底线:存在bug几率最低
自己实现一个算法可能是了解算法过程的一个好的方式,但是,实验期间,会引入额外的变量,比如bug,和大量必须为算法所做的微观决策
2.确定一个问题
你必须有一个你试图寻找答案的研究问题。问题越明确,问题越有用
给出的示例问题包括以下几个方面:
KNN算法中,作为样本空间中的一部分的K值在增大时有什么影响?
在SVM算法中,选择不同的核函数在二分类问题上有什么影响 ?
在二分类问题中,逻辑回归上的不同参数的缩放有什么影响 ?
在随机森林模型中,在训练集上增加任意属性对在分类准确性上有什么影响?
针对算法,设计你想回答的问题。仔细考虑,然后列出5个逐渐演变的问题,并且深入推敲那个最精确的
3.设计实验
从你的问题中挑选出关键元素然后组成你的实验内容。 例如,拿上面的示例问题为例:“二元分类问题中逻辑回归上的不同的参数缩放有什么影响?”
你从这个问题中挑出来用来设计实验的元素是:
属性缩放法:你可以采用像正态化、标准化,将某一属性提升至乘方、取对数等方法
二元分类问题:存在数值属性不同的二分类问题标准。需要准备多种问题,其中一些问题的规模是相同的(像电离层),然而其他一些问题的属性有不同的缩放值(像糖尿病问题)。
性能: 类似分类准确性的模型性能分数是需要的
花时间仔细挑选你问题中的组成元素以便为你的问题给出最佳解答。
4. 进行试验并且报告你的结论
完成你的实验
如果算法是随机的,你需要多次重复实验操作并且记录一个平均数和标准偏差
如果你试图寻找在不同实验(比如带有不同的参数)之间结果的差异,你可能想要使用一种统计工具来标明差异是否统计上显著的(就像学生的t检验)
一些工具像R和scikit-learn/SciPy完成这些类型的实验,但是你需要把它们组合在一起,并且为实验写脚本。其他工具像Weka带有图形用户界面,你所使用的工具不要影响问题和你实验设计的严密
总结你的实验结论。你可能想使用图表。单独呈现结果是不够的,他们只是数字。你必须将数字和问题联系起来,并且通过你的实验设计提取出它们的意义
对实验问题来说,实验结果又暗示着什么呢?
保持怀疑的态度。你的结论上有留什么样的漏洞和局限呢。不要逃避这一部分。知道局限性和知道实验结果一样重要
5. 重复
重复操作
继续研究你选择的算法。你甚至想要重复带有不同参数或者不同的测试数据集的同一个实验。你可能想要处理你试验中的局限性
不要只停留在一个算法上,开始建立知识体系和对算法的直觉
通过使用一些简单工具,提出好的问题,保持严谨和怀疑的态度,你对机器算法行为的理解很快就会到达世界级的水平
研究学习算法不仅仅是学者才能做的
你也可以学习研究机器学习算法。
你不需要一个很高的学位,你不需要用研究的方式训练,你也不需要成为一名学者
对每个拥有计算机和浓厚兴趣的人来说,机器学习算法的系统研究学习是开放的。事实上,如果你主修机器学习,你一定会适应机器学习算法的系统研究。知识根本不会自己出来,你需要靠自己的经验去得到
当谈论你的发现的适用性时,你需要保持怀疑和谨慎
你不一定提出独一无二的问题。通过研究一般的问题,你也将会收获很多,例如根据一些一般的标准数据集总结出一个参数的普遍影响。你保不住会发现某些具有最优方法的常例的局限性甚至反例。
行动步骤
通过可控实验你知道了研究学习机器学习算法行为的重要性。你掌握了简单的5个步骤,你可以在一个机器学习算法上设计和运行你的第一项实验
采取行动。使用你在这篇博文中学到的步骤,来完成你的第一个机器学习实验。一旦你完成了一个,甚至是很小的一个,你将会获得自信,工具、能力来完成第二个以及更多
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30