BP神经网络基本原理
2.1 BP神经网络基本原理
BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Yk,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度Tjk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。
2.2 BP神经网络模型
BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。
(1)节点输出模型
隐节点输出模型:Oj=f(∑Wij×Xi-qj) (1)
输出节点输出模型:Yk=f(∑Tjk×Oj-qk) (2)
f-非线形作用函数;q-神经单元阈值。
图1 典型BP网络结构模型
(2)作用函数模型
作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid函数: f(x)=1/(1+e-x) (3)
(3)误差计算模型
误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数:
Ep=1/2×∑(tpi-Opi)2 (4)
tpi- i节点的期望输出值;Opi-i节点计算输出值。
(4)自学习模型
神经网络的学习过程,即连接下层节点和上层节点之间的权重拒阵Wij的设定和误差修正过程。BP网络有师学习方式-需要设定期望值和无师学习方式-只需输入模式之分。自学习模型为
△Wij(n+1)=h×Фi×Oj+a×△Wij(n)(5)
h-学习因子;Фi-输出节点i的计算误差;Oj-输出节点j的计算输出;a-动量因子。
2.3 BP网络模型的缺陷分析及优化策略
(1)学习因子h的优化
采用变步长法根据输出误差大小自动调整学习因子,来减少迭代次数和加快收敛速度。
h=h+a×(Ep(n)- Ep(n-1))/ Ep(n)a为调整步长,0~1之间取值(6)
(2)隐层节点数的优化
隐节点数的多少对网络性能的影响较大,当隐节点数太多时,会导致网络学习时间过长,甚至不能收敛;而当隐节点数过小时,网络的容错能力差。利用逐步回归分析法并进行参数的显著性检验来动态删除一些线形相关的隐节点,节点删除标准:当由该节点出发指向下一层节点的所有权值和阈值均落于死区(通常取±0.1、±0.05等区间)之中,则该节点可删除。最佳隐节点数L可参考下面公式计算:
L=(m+n)1/2+c (7)
m-输入节点数;n-输出节点数;c-介于1~10的常数。
(3)输入和输出神经元的确定
利用多元回归分析法对神经网络的输入参数进行处理,删除相关性强的输入参数,来减少输入节点数。
(4)算法优化
由于BP算法采用的是剃度下降法,因而易陷于局部最小并且训练时间较长。用基于生物免疫机制地既能全局搜索又能避免未成熟收敛的免疫遗传算法IGA取代传统BP算法来克服此缺点。
3.优化BP神经网络在系统安全评价中的应用
系统安全评价包括系统固有危险性评价、系统安全管理现状评价和系统现实危险性评价三方面内容。其中固有危险性评价指标有物质火灾爆炸危险性、工艺危险性、设备装置危险性、环境危险性以及人的不可靠性。
3.1 基于优化BP神经网络的系统安全评价模型
图-2基于优化BP神经网络的系统安全评价模型
3.2 BP神经网络在系统安全评价中的应用实现
(1)确定网络的拓扑结构,包括中间隐层的层数,输入层、输出层和隐层的节点数。
(2)确定被评价系统的指标体系包括特征参数和状态参数
运用神经网络进行安全评价时,首先必须确定评价系统的内部构成和外部环境,确定能够正确反映被评价对象安全状态的主要特征参数(输入节点数,各节点实际含义及其表达形式等),以及这些参数下系统的状态(输出节点数,各节点实际含义及其表达方式等)。
(3)选择学习样本,供神经网络学习
选取多组对应系统不同状态参数值时的特征参数值作为学习样本,供网络系统学习。这些样本应尽可能地反映各种安全状态。其中对系统特征参数进行(-∞,∞)区间地预处理,对系统参数应进行(0,1)区间地预处理。神经网络的学习过程即根据样本确定网络的联接权值和误差反复修正的过程。
(4)确定作用函数,通常选择非线形S型函数
(5)建立系统安全评价知识库
通过网络学习确认的网络结构包括:输入、输出和隐节点数以及反映其间关联度的网络权值的组合;即为具有推理机制的被评价系统的安全评价知识库。
(6)进行实际系统的安全评价
经过训练的神经网络将实际评价系统的特征值转换后输入到已具有推理功能的神经网络中,运用系统安全评价知识库处理后得到评价实际系统的安全状态的评价结果。实际系统的评价结果又作为新的学习样本输入神经网络,使系统安全评价知识库进一步充实。
3.3 BP神经网络理论应用于系统安全评价中的优点
(1)利用神经网络并行结构和并行处理的特征,通过适当选择评价项目,能克服安全评价的片面性,可以全面评价系统的安全状况和多因数共同作用下的安全状态。
(2)运用神经网络知识存储和自适应特征,通过适应补充学习样本,可以实现历史经验与新知识完满结合,在发展过程中动态地评价系统的安全状态。
(3)利用神经网络理论的容错特征,通过选取适当的作用函数和数据结构,可以处理各种非数值性指标,实现对系统安全状态的模糊评价。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16