工业大数据使用案例
工业大数据使用案例之一:
预测自主维修决策支持分析
在目前的制造业里面,大数据可以做两件事情:一是打造未来的智能化供应链,二是把预防性维修、生产转化成预判性、预测性。这就是一个绿色产业,包括零排放、零宕机、零维护、供应链管理的零库存等。
物联网(IOT)的发展以及感应技术的兴起,开创了一个能紧密连接物理空间许多事物的信息网络。随着分析技术的发展,特别是预测分析的发展,结合互联网云化的广泛应用,物理空间与虚拟信息空间的形成与同步,离不开设备的自我意识和自主维修机械系统。智能设备的未来,一定是能够自主评估健康状况和退化情况并主动预防潜在性能故障,并且做出维修决策,以避免潜在故障的系统。
按照Jay Lee教授的看法,一个机械系统,自我意识指能够评估设备当前或历史条件,并对评估结果做出反应。要实现健康条件评估,就需要利用数据驱动算法分析从机械设备及其周边环境中的数据。实时设备条件信息可反馈至机械控制器以实现自适应控制,同时信息也会反馈至设备管理人员方便及时维修。然而,对大多数工业应用程序而言,尤其是设备机群而言,设备自我意识还远未实现。当前诊断或预测算法通常适用于具体设备或应用程序,而在处理复杂信息时自适应和灵活性稍显不足。由于同一机群中的设备和设备条件彼此互联,任务和维修计划可在机群级得到制定和优化。操作员可根据每台设备的健康条件平衡和调节每台设备工作量和工作压力,从而最大程度优化生产和设备性能,实现主动检修计划的智能决策。
工业大数据使用案例之二:
助力实现供应链优化与创新
第四次工业革命已在全球爆发,为各行业提供了机遇。其商业模式的特征在于价值链横向合作大幅增长,通过全产业的数字化互连与设备的实时监控,综合利用分析数据与预见分析,从而更好地满足客户的要求。
一般的供应链与全数字供应链的区别在于企业是否有能力高效地对全供应链实现监控、报警、预测及优化。面对庞大的数量以及日益复杂的数据分析任务,通过工业大数据来建立智能工业,其本质是利用自适应机器人与先进传感器等先进技术融合,实现一个数字化制造环境的发展,形成全方位综合优化管理价值链。通过在全供应链的数字优化按需定制和信息实时访问,供应链将变得更灵活。
未来智能供应链可以从生产、需求、服务的三个大方面来实现。首先从市场需要着手,通过工业大数据,分阶段实现需求预测,做好需求与库存对接的优化工作,实现分配最优。其次,加大生产质量生命周期的分析,对生产设备做好实时的预测性自维修以提高生产的质量,实现最大化产量和可靠性。最终,产品以服务的方式在市场上流通,实现供应链配件的优化、售前到售后的服务运营优化、保值分析以及建立增值的售后服务盈利模式。
智能供应链应该建立在高度自动化的分析技术和管理平台上,通过信息技术与运营技术结合形成,来帮助供应链的厂商从繁琐低效的手动工作中解放出来,实现供应链智能中心。未来的更智能的供应链除了实现智能的支出分析、物料数据分类等主要功能外,其核心旨在加速发展移动互联网、大数据、云计算、物联网及其相结合的制造业。利用先进数据分析和预测工具,对实时需求进行预测与分析,增强商业运营及用户体验,战胜更复杂的供应链挑战。
工业创新要以用户需求为转型的核心驱动,借助互联网的灵活和广阔,结合大数据行业的数据管理与分析技术,通过信息物理系统和决策支持系统,让我们的工业物理和信息空间融合同步,实现工业生产的自我意识和自我学习,形成预测监控系统的智能制造业大数据环境,帮助企业做出更“明智”的决策。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10