数据分析师的自我修养丨如何进阶为数据科学家
有人问我,应该如何从数据分析师进阶为数据科学家呢?很简单,分三步:
1. 打开LinkedIn,登录。
2. 点击“编辑我的个人资料”。
3. 找到“数据分析师”,并用“数据科学家”替代。
完成!非常容易吧。
不幸的是,现实并不那么简单。
掌握必备的技能,从或多或少的数据中得出分析见解,这些都并非易事。
关于如何进入数据科学领域的文章有很多,但是关于从数据分析师转变为数据科学家的文章却很少。
在此之前,我们有必要分别给出这两个职业的定义。
数据分析师
对结构化数据进行收集、处理并应用统计算法,从而产生效益和改进决策。
数据科学家
数据科学家有类似的目标,但需要更强的能力,从而能处理大量的非结构化数据,很多情况下需要实时处理。
数据科学家需要发现重要信息,能够对不同来源的数据进行数据清理、处理并运行高级算法。同时,需要很强的沟通描述能力,以及可视化技能。
我经常会遇到许多优秀的数据分析师,他们非常想进阶为数据科学家,但苦于没有机会,或不知道该如何开始。这也是促使我写本文的原因之一。
为什么要成为数据科学家?
原因有很多,主要分为以下几点:
影响力
可能带来巨大的商业利益。更有机会得到领导层青睐,能够更好地提升发展方向。
技能
在快速发展的数据科学领域中,有许多问题需要被解决。例如,构建图像识别器或文本分类器识别社交媒体上的发布的违规言论。
竞争力
有人预测人工智能最终将取代人类的工作。为了保证自己工作,应该不断创新并提高竞争力,而不是等待被自动化取代。
发展机会
会有更多的发展机会,薪水提升空间也更大。目前优秀的数据科学家很少,市场需求量很大。
如何成为数据科学家?
大多数数据分析师都有很好的基础,但是应用先进的方法处理大型数据集需要多年的学习和经验积累。
那么,数据科学家需要哪些技能?
这个问题并没有正确的答案,复杂的数据科学项目涉及到许多专业技能。在投入数据科学领域的最初几年,最好掌握以下技能:
数据科学语言:Python / R
关系数据库:MySQL、Postgress
非关系数据库:MongoDB
机器学习模型:回归、提升树支持向量机(Boosted Trees SVM), 神经网络
绘图:Neo4J、GraphX
云:GCP / AWS / Azure
API 交互:OAuth、Rest
专业领域:自然语言处理、OCR和计算机视觉
提升树模型在数据科学竞赛中很受欢迎
RShiny仪表板是不错的探索数据交互方式
掌握这些技能需要大量的时间(可能比获得专业学位更久)。但每个人都不能满足现状,必须不断学习。如果我们每天能进步一点,那么在未来某天就能达到自己的预期目标。
决心和坚韧有时比聪明才智能有用。
行动计划
首先我们需要一些基本技能:
1. 从正确的理念开始
十年前,等待数据课程的资料可能需要数周的时间,但那些日子已经一去不回。如今到处都有很棒的学习资源,我们需要不断学习,不断提升技能。
2. 学习一门语言并培养数学技能
可以选择学习Python或R语言。Coursera和Udemy等网站上有大量免费课程。吴恩达的机器学习课程和斯坦福大学的神经网络课程都非常棒,而且很有趣。
许多Python用户喜欢使用Anaconda和Jupyter Notebook。许多R用户喜欢用R Studio。
3. 解决实际问题
尝试解决工作中的实际问题,与商业专家和数据工程师一起工作。
4. 参加Kaggle比赛
Kaggle任务有一定范围,而且数据比较干净,但能很好的提高建立模型技能,同时能与几千人一起解决挑战性的数据问题。不要担心排名,从零开始。
5. 了解行业大神的动向
可以关注Geoffrey Hinton、吴恩达、Yann LeCun、Rachel Thomas、Jeremy Howard等人。
6. 使用高效的工作方式
积累一定基础后,使用GitHub等版本控制系统改进自己的工作流程,以便进行部署和代码维护,还可以使用Docker。
7. 有效地沟通
我们需要展现自己的工作成果,在跟领导层汇报工作时,需要有效地利用演示文稿等中。
良好的工作环境
即使你掌握了许多技能,但如果所在的公司没有合适的工具和环境,那么开展工作也是很困难的。工作环境中总会存在些不可控的因素,因此我们要考虑哪些因素可以改善和利用。
1. 转到合适的团队
大多数大中型企业至少有一个小型数据科学团队,因此要选择合适的企业。
2. 与合适的人合作
如果换工作不太现实,那么设法与出色的数据科学家合作。例如,发现相关问题,与专业人员合作解决,而不是委托他们解决。
3. 适当的工具和环境
企业有时不太明确该如何数据科学工具进行投入。有些企业制定计划和投入过程比较繁琐,因此只会优先考虑收益明显的商业案例。抓住机会,倡导对分析环境、工具、相关培训的投入。
4. 制定明确的用例
了解公司的业务以及能如何应用数据科学,将这两者联系起来,制定明确的用例。
5. 与更优秀的人合作
努力成为优秀团队中的一员,你不仅会收获地更多,还能学到很多自己为掌握的知识。
结语
如果你也想进阶为数据科学家,那么现在就是开始的最佳机会,立即开始学习,尽快解决实际问题。在学习的过程中,你会不断提升自己,最终让自己大吃一惊,要珍惜每个机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06