英雄联盟如何指挥团战?AI帮你做决策
英雄联盟是一个需要默契团队配合的多人对战游戏。在瞬息万变的战斗中,如何做出正确的决策非常重要。最近,数据分析师 Philip Osborne 提出了一种利用人工智能技术提升英雄联盟中团队决策水平的方法,并将其开源。该方法不仅参考了大量真实游戏的统计结果,也将当前玩家的偏好计算在内。
该项目由三部分组成,旨在将 MOBA 游戏《英雄联盟》的对战建模为马尔科夫决策过程,然后应用强化学习找到最佳决策,该决策还考虑到玩家的偏好,并超越了简单的「计分板」统计。
作者在 Kaggle 中上传了模型的每个部分,以便大家更好地理解数据的处理过程与模型结构:
目前这个项目还在进行当中,我们希望展示复杂的机器学习方法可以在游戏中做什么。该游戏的分数不只是简单的「计分板」统计结果,如下图所示:
动机和目标
英雄联盟是一款团队竞技电子游戏,每局游戏有两个团队(每队五人),为补兵与杀人展开竞争。获得优势会使玩家变得比对手更强大(获得更好的装备,升级更快),一方优势不断增加的话,获胜的几率也会变大。因此,后续的打法和游戏走向依赖于之前的打法和战况,最后一方将摧毁另一方的基地,从而赢得比赛。
像这种根据前情建模的情况并不新鲜;多年来,研究人员一直在考虑如何将这种方法应用于篮球等运动中(https://arxiv.org/pdf/1507.01816.pdf),在这些运动中,传球、运球、犯规等一系列动作会导致一方得分或失分。此类研究旨在提供比简单的得分统计(篮球中运动员得分或游戏里玩家获取人头)更加详细的情况,并考虑建模为时间上连续的一系列事件时,团队应该如何操作。
以这种方式建模对英雄联盟这类游戏来说更为重要,因为在该类游戏中,玩家补兵和杀人后可以获得装备并升级。例如,一个玩家拿到首杀就可以获取额外金币购买更强的装备。而有了这些装备之后,该玩家变得更加强大进而获取更多人头,如此循环,直到带领其队伍获取最后的胜利。这种领先优势被称为「滚雪球」,因为该玩家会不断积累优势,不过很多时候,该玩家在游戏中所在的队伍并不一定是优势方,野怪和团队合作更为重要。
该项目的目标很简单:我们是否可以根据游戏前情计算下一步最好的打法,然后根据真实比赛数据增加最终的胜率。
然而,一场游戏中影响玩家决策的因素有很多,没那么容易预测。不论收集多少数据,玩家获得的信息量始终多于任何一台计算机(至少目前如此!)。例如,在一场游戏中,玩家可能超水平发挥或发挥失常,或者偏好某种打法(通常根据他们选择的英雄来界定)。有些玩家自然而然地会变得更加好斗,喜欢杀戮,有些玩家则比较被动一直补兵发育。因此,我们进一步开发模型,允许玩家根据其偏好调整建议的打法。
让模型「人工智能化」
在第一部分中,我们进行了一些介绍性的统计分析。例如,假设队伍在比赛中补到第一个和第二个兵,我们能够计算出获胜的概率,如下图所示。
有两个组成部分,使我们的项目超越简单的统计的人工智能:
我们定义马尔可夫决策过程及收集玩家喜好的方式会决定模型学习和输出的内容。
根据匹配统计信息对马尔科夫决策过程进行预处理和创建
AI 模型 II:引入打钱效率
我从第一个模型的结果中意识到,我们没有考虑到负面和正面事件对未来都可能产生累积的影响。换句话说,无论在当时时间点之前还是之后,当前的 MDP(马尔科夫决策过程)概率都有可能发生。在游戏中,这是不正确的。一旦落后,杀人、拿塔、补兵都会变得更难,我们需要考虑到这一点。所以,我们引入队伍间的打钱效率来重新定义状态。当前目标是建立一个定义状态的 MDP,这个状态可能是事件发生顺序,或者队伍是否落后或领先。我们将金币差值分为以下几类:
我们也需要考虑没有任何事件发生的情况,并把其归为『无』事件中,以保证每分钟都有事件发生。这个『无』事件表示一个队伍决定拖延游戏,以将那些在早期游戏中更善于获得金币的队伍区分出来,而不需要杀死(或通过小兵杀死)他们。然而,这样做也会大大增加数据量。因为我们为匹配可用匹配项已经添加了 7 个类别,但如果我们能访问更常规的匹配项,那数据量就已足够了。如前所述,我们可以通过以下步骤来概述:
预处理
1. 输入杀人数、塔数、野怪和金币差值的数据。
2. 将『地址』转为 ID 特性。
3. 移除所有旧版本的游戏。
4. 从金币差值开始,按照事件的时间、匹配 ID 和与以前一致的团队进行合计。
5. 追加(助攻的)人头数、怪数和塔数到此末尾,为每个事件创建行并按发生的时间对事件进行排序(平均人头数)。
6. 添加「事件序号」特性,显示每次匹配中的事件顺序。
7. 为行上的每个事件创建一个统一的「事件」特性,包括人头、塔、怪或者『无』事件。
8. 每次匹配时将其转化为行,现在是用列来表示每个事件。
9. 只考虑红队的视角,以便合并列,视蓝队增益为负红队增益。同时增加红队的游戏长度和结果。
10. 将所有空白值 (即在前面步骤中结束的游戏) 替换为匹配的游戏结果,以便所有行中的最后一个事件是匹配结果。
11. 转换为 MDP,其中 P(X_t | X_t-1)用于每个事件数和由金币差值定义的状态之间的所有事件类型。
马尔科夫决策过程输出
使用简易英语的模型 V6 伪代码
我们最终版本的模型简单总结如下:
1. 引入参数
2. 初始化启动状态、启动事件、启动操作
3. 根据 MDP 中定义的首次提供或基于其发生可能性的随机选择操作
4. 当行动赢或输时,结束
5. 跟踪事件中所采取的行动和最终结果(赢/输)
6. 根据最终结果所用的更新规则来更新操作
7. 重复 x 次上述步骤
引入奖励偏好
首先,我们调整模型代码,把奖励归入回报计算中。然后,当我们运行模型时,引入了对某些行为的偏置,现而不是简单地使奖励等于零。
在第一个例子中,我们显示了如果对一个动作进行积极的评价,会发生什么;在第二个例子中,显示对一个动作进行消极的评价,会发生什么。
如果我们积极评价动作『+KILLS』的输出
如果我们消极评价动作『+KILLS』的输出
更真实的玩家偏好
现在我们可以尝试近似模拟玩家的真实偏好。在这个案例中,我们随机化一些奖励以允许遵守以下两条规则:
因此,我们对人头和补兵的奖励都是最小值-0.05,而其它行动的奖励都在-0.05 和 0.05 之间随机生成。
随机化玩家奖励后的输出。
随机化玩家所有动作的奖励后所获得的输出。
最终输出,显示给定当前金币差值状态和分钟的每个动作的值
总结及玩家对奖励的反馈
我过分简化了某些特征(如「kills」实际上并不代表人头的数量),数据也不太可能表示正常的匹配。然而,我希望本文能够清晰地展现一个有趣的概念,鼓励更多人讨论这一领域今后的走向。
首先,我将列出在实现之前需要作出的重要改进:
1. 使用更多能够代表整个玩家群体(而不只是竞争性比赛)的数据计算 MDP。
2. 提高模型效率,将其计算时间控制在更合理的范围。蒙特卡洛以耗时著称,因此我们将探索更高效的算法。
3. 采用更高级的参数优化以进一步改进结果。
4. 捕捉、映射原型玩家对更真实的奖励信号的反馈。
我们引入了针对影响模型输出而给予的奖励,但该如何获得奖励?我们可以考虑几种方法,但是根据我之前的研究,我认为最好的方法就是考虑一种既涉及到行动的个体质量又考虑到转变质量的奖励。
这变得越来越复杂,我不会在此文中展开,但简而言之,我们想为玩家匹配决策,其中下一个最佳决策取决于最新情况。比如,如果一队玩家将对方全部歼灭,他们可能会去拿大龙。我们的模型已经将一个序列中事件发生的概率考虑在内,因此,我们也应该用同样的方式思考玩家的决策。这一想法来自一篇论文《DJ-MC: A Reinforcement-Learning Agent for Music Playlist Recommendation》,该论文阐释了如何更加详细地将反馈映射出来。
反馈的收集方式决定了我们的模型能有多成功。依我之见,我们这么做的最终目标是为玩家的下一步决策提供最佳实时建议。如此一来,玩家就能从根据比赛数据算出的几条最佳决策(根据获胜情况排序)中做出选择。可以在多个游戏中跟踪该玩家的选择,以进一步了解和理解该玩家的偏好。这也意味着,我们不仅可以追踪决策的结果,还能预测该玩家的意图(例如,该玩家试图拆塔结果却被杀了),甚至还能为更高级的分析提供信息。
当然,这样的想法可能造成团队成员意见不符,也可能让游戏变得没那么令人兴奋。但我认为这样的想法可能对低水平或者常规水平的玩家有益,因为这种水平的游戏玩家难以清楚的沟通游戏决策。这也可能帮助识别「毒瘤」玩家,因为团队指望通过投票系统来统一意见,然后就能看出「毒瘤」玩家是不是一直不遵循团队计划,忽略队友。
实时游戏环境中的模型推荐投票系统示例
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25