通过代码实例展示Python中列表生成式的用法
这篇文章主要介绍了通过代码实例展示Python中列表生成式的用法,包括找出质数、算平方数等基本用法,需要的朋友可以参考下
1 平方列表
如果你想创建一个包含1到10的平方的列表,你可以这样做:
squares = []
for x in range(10):
squares.append(x**2)
这是一个简单的例子,但是使用列表生成式可以更简洁地创建这个列表。
squares = [x**2 for x in range(10)]
这个最简单的列表生成式由方括号开始,方括号内部先是一个表达式,其后跟着一个for语句。列表生成式总是返回一个列表。
2 整除3的数字列表
通常,你可能这样写:
numbers = []
for x in range(100):
if x % 3 == 0:
numbers.append(x)
你可以在列表生成式里包含一个if语句,来有条件地为列表添加项。为了创建一个包含0到100间能被3整除的数字列表,可以使用列表推导式:
numbers = [x for x in range(100) if x % 3 == 0]
3 找出质数
这通常要使用好几行代码来实现。
noprimes = []
for i in range(2, 8):
for j in range(i*2, 50, i):
noprimes.append(j)
primes = []
for x in range(2, 50):
if x not in noprimes:
primes.append(x)
不过,你可以使用两个列表生成式来简化代码。
noprimes = [j for i in range(2, 8) for j in range(i*2, 50, i)]
primes = [x for x in range(2, 50) if x not in noprimes]
第一行代码在一个列表生成式里使用了多层for循环。第一个循环是外部循环,第二个循环是是内部循环。为了找到质数,我们首先找到一个非质数的列表。通过找出2-7的倍数来产生这个非质数列表。然后我们循环遍历数字并查看每个数字是否在非质数列表。
修正:正如reddit上的shoyer指出的,使用集合(set)来查找noprimes(代码里的属性参数,译者注)效率更高。由于noprimes应该只包含唯一的值,并且我们频繁地去检查一个值是否存在,所以我们应该使用集合。集合的使用语法和列表的使用语法类似,所以我们可以这样使用:
noprimes = set(j for i in range(2, 8) for j in range(i*2, 50, i))
primes = [x for x in range(2, 50) if x not in noprimes]
4 嵌套列表降维
假设你有一个列表的列表(列表里包含列表)或者一个矩阵,
matrix = [[0,1,2,3], [4,5,6,7], [8,9,10,11]]
并且你想把它降维到一个一维列表。你可以这样做:
flattened = []
for row in matrix:
for i in row:
flattened.append(i)
使用列表生成式:
flattened = [i for row in matrix for i in row]
这使用了两个for循环去迭代整个矩阵。外层(第一个)循环按行迭代,内部(第二个)循环对该行的每个项进行迭代。
5 模拟多个掷硬币事件
假设需要模拟多次掷硬币事件,其中0表示正面,1表示反面,你可以这样编写代码:
from random import random
results = []
for x in range(10):
results.append(int(round(random())))
或者使用列表生成式使代码更简洁:
from random import random
results = [int(round(random())) for x in range(10)]
这里使用了range函数循环了10次。每一次我们都把random()的输出进行四舍五入。因为random()函数返回一个0到1的浮点数,所以对输出进行四舍五入就会返回0或者1。Round()函数返回一个浮点型数据,使用int()将其转为整型并添加到列表里。
6 移除句子中的元音字母
假设你有一个句子,
sentence = 'Your mother was a hamster'
并且你想移除所有的元音字母。我们可以使用几行代码轻易做到:
vowels = 'aeiou'
non_list = []
for l in sentence:
if not l in vowels:
non_list.append(l)
nonvowels = ''.join(non_list)
或者你可以使用列表生成式简化它:
vowels = 'aeiou'
nonvowels = ''.join([l for l in sentence if not l in vowels])
这个例子使用列表生成式创建一个字母列表,字母列表的字母来自sentence句子的非元音字母。然后我们把生成的列表传给join()函数去转换为字符串。
修正:正如reddit上的iamadogwhatisthis提出的,这个例子不需要列表生成式。使用生成器(generator)更好:
vowels = 'aeiou'
nonvowels = ''.join(l for l in sentence if not l in vowels)
注意,这里去掉了方括号。这是因为join函数接收任意可迭代的数据,包括列表或者生成器。这个没有方括号的语法使用了生成器。这产生(与列表生成式)同样的结果,相对于之前把所有条目包装成一个列表,生成器在我们遍历时才产生相应的条目。这可以使我们不必保存整个列表到内存,并且这对于处理大量数据更有效率。
7 获取目录里的文件名列表
下面的代码将会遍历my_dir目录下的文件,并在files里追加每个以txt为后缀的文件名。
import os
files = []
for f in os.listdir('./my_dir'):
if f.endswith('.txt'):
files.append(f)
这同样可以使用列表生成式简化代码:
import os
files = [f for f in os.listdir('./my_dir') if f.endswith('.txt')]
或者你可以获取一个相对路径的列表:
import os
files = [os.path.join('./my_dir', f) for f in os.listdir('./my_dir') if f.endswith('.txt')]
感谢reddit上的rasbt提供。
8 将csv文件读取为字典列表
我们常常需要读取和处理csv文件的数据。处理csv数据的一个最有用的方法就是把它转换为一个字典列表。
import csv
data = []
for x in csv.DictReader(open('file.csv', 'rU')):
data.append(x)
你可以使用列表生成式快速实现:
import csv
data = [ x for x in csv.DictReader(open('file.csv', 'rU'))]
DictReader类将会自动地使用csv文件的第一行作为字典的key属性名。DictReader类返回一个将会遍历csv文件所有行的对象。这个文件对象通过open()函数产生。我们提供了open()两个参数–第一个是csv文件名,第二个是模式。在这例子,‘rU'有两个意思。想往常一样,‘r'表示以读模式打开文件。‘U'表明我们将会接受通用换行符–‘n',‘r'和‘rn'。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24