通过代码实例展示Python中列表生成式的用法
这篇文章主要介绍了通过代码实例展示Python中列表生成式的用法,包括找出质数、算平方数等基本用法,需要的朋友可以参考下
1 平方列表
如果你想创建一个包含1到10的平方的列表,你可以这样做:
squares = []
for x in range(10):
squares.append(x**2)
这是一个简单的例子,但是使用列表生成式可以更简洁地创建这个列表。
squares = [x**2 for x in range(10)]
这个最简单的列表生成式由方括号开始,方括号内部先是一个表达式,其后跟着一个for语句。列表生成式总是返回一个列表。
2 整除3的数字列表
通常,你可能这样写:
numbers = []
for x in range(100):
if x % 3 == 0:
numbers.append(x)
你可以在列表生成式里包含一个if语句,来有条件地为列表添加项。为了创建一个包含0到100间能被3整除的数字列表,可以使用列表推导式:
numbers = [x for x in range(100) if x % 3 == 0]
3 找出质数
这通常要使用好几行代码来实现。
noprimes = []
for i in range(2, 8):
for j in range(i*2, 50, i):
noprimes.append(j)
primes = []
for x in range(2, 50):
if x not in noprimes:
primes.append(x)
不过,你可以使用两个列表生成式来简化代码。
noprimes = [j for i in range(2, 8) for j in range(i*2, 50, i)]
primes = [x for x in range(2, 50) if x not in noprimes]
第一行代码在一个列表生成式里使用了多层for循环。第一个循环是外部循环,第二个循环是是内部循环。为了找到质数,我们首先找到一个非质数的列表。通过找出2-7的倍数来产生这个非质数列表。然后我们循环遍历数字并查看每个数字是否在非质数列表。
修正:正如reddit上的shoyer指出的,使用集合(set)来查找noprimes(代码里的属性参数,译者注)效率更高。由于noprimes应该只包含唯一的值,并且我们频繁地去检查一个值是否存在,所以我们应该使用集合。集合的使用语法和列表的使用语法类似,所以我们可以这样使用:
noprimes = set(j for i in range(2, 8) for j in range(i*2, 50, i))
primes = [x for x in range(2, 50) if x not in noprimes]
4 嵌套列表降维
假设你有一个列表的列表(列表里包含列表)或者一个矩阵,
matrix = [[0,1,2,3], [4,5,6,7], [8,9,10,11]]
并且你想把它降维到一个一维列表。你可以这样做:
flattened = []
for row in matrix:
for i in row:
flattened.append(i)
使用列表生成式:
flattened = [i for row in matrix for i in row]
这使用了两个for循环去迭代整个矩阵。外层(第一个)循环按行迭代,内部(第二个)循环对该行的每个项进行迭代。
5 模拟多个掷硬币事件
假设需要模拟多次掷硬币事件,其中0表示正面,1表示反面,你可以这样编写代码:
from random import random
results = []
for x in range(10):
results.append(int(round(random())))
或者使用列表生成式使代码更简洁:
from random import random
results = [int(round(random())) for x in range(10)]
这里使用了range函数循环了10次。每一次我们都把random()的输出进行四舍五入。因为random()函数返回一个0到1的浮点数,所以对输出进行四舍五入就会返回0或者1。Round()函数返回一个浮点型数据,使用int()将其转为整型并添加到列表里。
6 移除句子中的元音字母
假设你有一个句子,
sentence = 'Your mother was a hamster'
并且你想移除所有的元音字母。我们可以使用几行代码轻易做到:
vowels = 'aeiou'
non_list = []
for l in sentence:
if not l in vowels:
non_list.append(l)
nonvowels = ''.join(non_list)
或者你可以使用列表生成式简化它:
vowels = 'aeiou'
nonvowels = ''.join([l for l in sentence if not l in vowels])
这个例子使用列表生成式创建一个字母列表,字母列表的字母来自sentence句子的非元音字母。然后我们把生成的列表传给join()函数去转换为字符串。
修正:正如reddit上的iamadogwhatisthis提出的,这个例子不需要列表生成式。使用生成器(generator)更好:
vowels = 'aeiou'
nonvowels = ''.join(l for l in sentence if not l in vowels)
注意,这里去掉了方括号。这是因为join函数接收任意可迭代的数据,包括列表或者生成器。这个没有方括号的语法使用了生成器。这产生(与列表生成式)同样的结果,相对于之前把所有条目包装成一个列表,生成器在我们遍历时才产生相应的条目。这可以使我们不必保存整个列表到内存,并且这对于处理大量数据更有效率。
7 获取目录里的文件名列表
下面的代码将会遍历my_dir目录下的文件,并在files里追加每个以txt为后缀的文件名。
import os
files = []
for f in os.listdir('./my_dir'):
if f.endswith('.txt'):
files.append(f)
这同样可以使用列表生成式简化代码:
import os
files = [f for f in os.listdir('./my_dir') if f.endswith('.txt')]
或者你可以获取一个相对路径的列表:
import os
files = [os.path.join('./my_dir', f) for f in os.listdir('./my_dir') if f.endswith('.txt')]
感谢reddit上的rasbt提供。
8 将csv文件读取为字典列表
我们常常需要读取和处理csv文件的数据。处理csv数据的一个最有用的方法就是把它转换为一个字典列表。
import csv
data = []
for x in csv.DictReader(open('file.csv', 'rU')):
data.append(x)
你可以使用列表生成式快速实现:
import csv
data = [ x for x in csv.DictReader(open('file.csv', 'rU'))]
DictReader类将会自动地使用csv文件的第一行作为字典的key属性名。DictReader类返回一个将会遍历csv文件所有行的对象。这个文件对象通过open()函数产生。我们提供了open()两个参数–第一个是csv文件名,第二个是模式。在这例子,‘rU'有两个意思。想往常一样,‘r'表示以读模式打开文件。‘U'表明我们将会接受通用换行符–‘n',‘r'和‘rn'。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31