热线电话:13121318867

登录
首页精彩阅读神经网络入门之bp算法,梯度下降
神经网络入门之bp算法,梯度下降
2018-08-01
收藏

神经网络入门之bp算法,梯度下降

本人作为一个想进行NLP研究的新手,看了很多网络上很好的神经网络的入门代码和数学原理。但是个人数学比较烂,很多东西想了很久才想明白,又害怕忘掉。为此写下这篇大白话入门篇作为自己学习的一个记录,也想为跟我同样想入门的同学们一个参考。希望有问题多多交流。
备注:很多内容都是本人自己想当然的结果,有错误的话,望大神们多多指教。
废话都说完了本文将从一个最简单一个BP网络开始讲起。
bp网络的bp(back propagation)中文就是反向传播的意思,为什么反向传播呢。是为了将配合梯度下降法进行迭代求出好的结果。这个会稍后讲解。

上图来自百度图片(懒得画了)
x为输入,w为权重,这个f(x)被称为激活函数(activation function)。如sigmoid,tanh等。他们的特点有一个就是可以容易的求出他们的导数(很关键)。激活函数的意义可以看这篇神经网络激励函数的作用是什么?有没有形象的解释?
可以看到输出的o = f(w1x1+w2x2+w3x3+w4x4) = f(∑WiXi)。
第一次运算的结果很明显就是上边的o。但是此时问题出来了,运算出来的o和实际的结果肯定式有误差的,该如何利用这个误差优化这个运算呢?也就是得到好的w呢?

梯度下降法

此时就出现了反向传播这个过程。而配合反向传播的就是梯度下降法了。
现在很多同学可能会很晕,当时我第一次看的时候也很晕。
为了容易理解梯度下降法,建议去看Ng的斯坦福网课第二节,非常清楚。比我写的清楚多了。
梯度下降法是求(局部)最好的w。
设误差函数为:


y为实际结果,o为预测结果。
设激活函数f(x)为sigmoid函数,此时就可以很方便的求出其导数了(其他激活函数也是一样)


所以我们要求的就是J最小的时候wi的值。a是变化的速率。下式就可以比作从山顶走到山底的过程,而a表示行走的步长或者是速率。


此时可以发现每一项都是可以求出的,则经过多次运算,可以求出好的Wi
一般我们把前两项作为


此时我们可以发现

BP的原因

上边介绍完了梯度下降,现在再说反向传播理由。其实很简单了。它用的就是链式法则。我们第一步是前向传播,进行一系列运算得到了预测结果o。为了使用梯度下降法,我们需要得到,上边需要的delta,也就是说 J 这个误差函数。因为实际结果我们知道,而激活函数的导数我们也知道怎么运算。所以我们得到预测结果o时,delta就可以求出来。而delta属于输出层的运算,再乘以输入层的Xi就能得到∂

Wi,进一步更新Wi。
很明显可以看出整个一轮的运算是:
前向传播:
输入层—-w—》输出层(sigmoid)—-》预测结果
后向传播:
误差—》输出层(sigmoid)求导—-》输入层—–》更新Wi

换句话说,BP算法就是提供了给梯度下降法所需要的所有值。
由链式法则可知,如果网络层数为3层以上时也可以得到每层的delta。
python代码来说:
layer_n_delta = layer_n+1_delta.dot((W_n_n+1).T)
(W_n_n+1) += (Xn).T.dot(layer_n+1_delta)

上边有很多符号有点问题,但是我觉得阅读应该没有什么障碍。因为第一次用这个marddown编辑器,很多东西不好弄。


数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询