神经网络入门之bp算法,梯度下降
本人作为一个想进行NLP研究的新手,看了很多网络上很好的神经网络的入门代码和数学原理。但是个人数学比较烂,很多东西想了很久才想明白,又害怕忘掉。为此写下这篇大白话入门篇作为自己学习的一个记录,也想为跟我同样想入门的同学们一个参考。希望有问题多多交流。
备注:很多内容都是本人自己想当然的结果,有错误的话,望大神们多多指教。
废话都说完了本文将从一个最简单一个BP网络开始讲起。
bp网络的bp(back propagation)中文就是反向传播的意思,为什么反向传播呢。是为了将配合梯度下降法进行迭代求出好的结果。这个会稍后讲解。
上图来自百度图片(懒得画了)
x为输入,w为权重,这个f(x)被称为激活函数(activation function)。如sigmoid,tanh等。他们的特点有一个就是可以容易的求出他们的导数(很关键)。激活函数的意义可以看这篇神经网络激励函数的作用是什么?有没有形象的解释?
可以看到输出的o = f(w1x1+w2x2+w3x3+w4x4) = f(∑WiXi)。
第一次运算的结果很明显就是上边的o。但是此时问题出来了,运算出来的o和实际的结果肯定式有误差的,该如何利用这个误差优化这个运算呢?也就是得到好的w呢?
此时就出现了反向传播这个过程。而配合反向传播的就是梯度下降法了。
现在很多同学可能会很晕,当时我第一次看的时候也很晕。
为了容易理解梯度下降法,建议去看Ng的斯坦福网课第二节,非常清楚。比我写的清楚多了。
梯度下降法是求(局部)最好的w。
设误差函数为:
y为实际结果,o为预测结果。
设激活函数f(x)为sigmoid函数,此时就可以很方便的求出其导数了(其他激活函数也是一样)
所以我们要求的就是J最小的时候wi的值。a是变化的速率。下式就可以比作从山顶走到山底的过程,而a表示行走的步长或者是速率。
此时可以发现每一项都是可以求出的,则经过多次运算,可以求出好的Wi
一般我们把前两项作为
此时我们可以发现
上边介绍完了梯度下降,现在再说反向传播理由。其实很简单了。它用的就是链式法则。我们第一步是前向传播,进行一系列运算得到了预测结果o。为了使用梯度下降法,我们需要得到,上边需要的delta,也就是说 J 这个误差函数。因为实际结果我们知道,而激活函数的导数我们也知道怎么运算。所以我们得到预测结果o时,delta就可以求出来。而delta属于输出层的运算,再乘以输入层的Xi就能得到∂
Wi,进一步更新Wi。
很明显可以看出整个一轮的运算是:
前向传播:
输入层—-w—》输出层(sigmoid)—-》预测结果
后向传播:
误差—》输出层(sigmoid)求导—-》输入层—–》更新Wi
换句话说,BP算法就是提供了给梯度下降法所需要的所有值。
由链式法则可知,如果网络层数为3层以上时也可以得到每层的delta。
用python代码来说:
layer_n_delta = layer_n+1_delta.dot((W_n_n+1).T)
(W_n_n+1) += (Xn).T.dot(layer_n+1_delta)
上边有很多符号有点问题,但是我觉得阅读应该没有什么障碍。因为第一次用这个marddown编辑器,很多东西不好弄。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20