大数据的挑战:数据质量和历史偏见
撇开炒作,利用大数据和分析法将会对企业未来业绩产生重大影响,重整整个行业并孕育新的产业。然而,还面临着很多挑战。它们从众所周知的缺乏数据科学人员来处理大数据,到更加棘手且很少提及的根源于人性的问题。
后者之一是人类聚积数据的倾向。另一个是人类仍然固守先入为主的倾向,即使数据结果明显不同。最近举办的麻省理工斯隆学院CIO研讨会就大数据和分析法发言的数据专家们取得了共识。发现地雷?希望落空?那些已经取得进展的企业已经知道,大数据和分析法没有最终真理。迭代就是全部,专家们也同意。
不仅如此,除了迭代的价值,
CIO们可以将最佳实践抛于脑后。正在兴起的未来实践才是深入研究大数据的公司最可以依靠的,在旧金山工作的计算机科学家Michael
Chui说。他是麦肯锡全球研究院高级研究员,该研究院是位于纽约的麦肯锡咨询公司的研究机构。
“我们知道这不可行:等到5年后完美的数据仓库出现。”Chui说,他是去年重大麦肯锡大数据价值报告的作者。
相对地看待数据质量
Chui说,事实上,沉迷于数据质量是很多公司需要克服的第一个障碍,如果他们希望有效的使用大数据。数据的精确性对银行财务报告是至关重要的。然而,不精确的数据包含了模式可以突出业务问题或者提供可以产生重要价值的洞察力,比如另一个研讨会专家小组的相关新闻报道的,“抓住大数据和分析法,否则将落伍,MIT专家小组称”
专门小组成员Shvetank Shah说,相对那些快马加鞭以取得最佳质量数据的组织,那些“了解数据质量”的组织,即使使用元标签或颜色编码来标识数据质量-,对大数据的进展更快。他是华盛顿特区的咨询公司(CEB)的执行董事,一家位于。
Shah提醒道,然而大数据结构的混乱性使得商业才智至关重要:重视经理了解何时值得去追求这些数据的能力。他说:“你雇佣经理的原因就是:去分析,去联系和迭代。”[page]
在科学研究中,理解每一个变量的所有情况是不可能的,所以“迭代很重要”James
Noga说。他是波士顿的医疗保健非营利性组织Partners HealthCare System的CIO.
他说,那些擅长大数据处理的人必须能够挑选出有代表性的关键点,并且“在当时作出最好的推测”.
不管怎样这一点可以被推而广之,不仅是在关注数据质量的公司,而且那些习惯于结构化IT流程的IT公司中也可以推广。
消除旧观念和成见不易
专家组成员说,那些拥有模式识别技能、好奇心,并理解实验价值的人是有效使用大数据和分析法的关键。然而,CEB的Shah发现,使科学方法成为公司文化的一部分极其困难。“你可以让所有聪明的数据分析专家聚集在企业核心,做出很多聪明的决定。但是如果做不到这样的话,客服代表、经理们以及其它外围人员做出的决定就更加重要。”因为大多数公司没办法雇佣足够的数据科学人员去研究大数据,另一个挑战是寻找培训人才。
CEB发现很少公司能够使用大数据和分析法法去驱动业务决策。最新对近500家企业的研究发现,20%的调查对象使用直觉做决定;49%想要更多数据,另有38%被CEB称为“知情的怀疑论者”,也就是那些可以进行模糊数据,并推动业务向前发展。不仅如此,Shah说,人们倾向于坚持成见,“技术数据显示的恰恰相反”.“消除成见非常困难。”
聚积数据是另一个开发大数据的障碍。麦肯锡研究的一个发现是金融服务(其收集和分析数据的历史悠久)在使用大数据上滞后。Chui说:“我们发现很多西方银行的业务竖井的界限已经变得如此之大,以至于分享数据的想法非常,非常之弱。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20