细数数据科学团队中的十大关键角色
应用数据科学是一项高度跨学科的团队工作,需要用多样性的角度看问题。事实上,比起专业知识和经验,观点和态度的重要性也不容小觑。以下是我对数据科学团队构成的看法。
1. 数据工程师
首先在进行数据分析之前,我们需要获取数据。如果是处理小型数据集,数据工程则有点类似在电子表格中输入数字;如果是处理更复杂的数据时,那么数据工程本身就构成了一门复杂的学科。首先你的团队中需要数据工程师获取数据,从而其他人员能够在此基础上进行分析和处理。
2. 决策者
在聘请数据科学家之前,请确保团队中有充分了解数据驱动决策的角色。决策者需要分辨哪些决策需要数据支持,并根据对业务的潜在影响确定分析程度。同时决策者需要深思熟虑,在做决定前进行全方位的思考,考虑到问题的方方面面。
3. 数据分析师
每个人都能查看数据,并从中得出见解,唯一可能缺少的是相关软件的使用技能。
学习使用R和Python等工具是对数据可视化的升级,这些工具功能更丰富,从而能够查看更多种类数据集。
1934年,"尼斯湖水怪"图
要记住,你不应该得出数据之外的结论,这需要专业培训。就像根据上面的图片,你只能说“这就是我的数据集中的内容”,而不能轻率的得出结论,尼斯湖水怪是真实存在的。
4. 专家分析师
专家分析师需要更快地查看分析数据。这里注重的是分析数据、探索和发现等技能,而不是严谨地得出结论。专家分析师能够帮助团队注意更多的数据,从而决策者能够更清晰地做出判断。
但最好不要让能编写强大代码的工程师担任这个角色,因为在这方面速度就是一切,需要尽快得出更多分析结论。因此对代码要求过高的人很难胜任这个角色。
5. 统计学家
到这个阶段,团队中已经有人对数据进行大胆探索了,下面需要有人能在探索中加入理性分析,避免团队得出无根据的结论。
例如,如果你的机器学习系统能应用于某个数据集,那么你能得出结论,在该数据集中这个系统是奏效的。那么能顺利用于生产中吗?能够进行发行吗?这时就需要其他技能来处理这些问题,即统计技能。
如果我们想在可观事实不够的情况下做出决定,那么就需要放慢速度并采取谨慎的态度,这部分就需要统计学家。
6. 机器学习工程师
应用人工智能/机器学习工程师的价值不是在于理解算法的运行原理,而是能运用这些算法而不是构建它们(那是研究人员要做的)。他们需要整理代码,从而让其运行在现有的算法和数据集中。
除此之外,机器学习工程师要能够应对失败。大多数时候你不知道自己在做什么,你通过大量的算法运行数据,在得到预期结果前会经历多次的失败,因此需要能积极地应对失败。
完美主义者很难成为机器学习工程师,因为要处理的业务问题不像课堂中那样,你无法事先把握情况,而无法马上得出预期的结果。你所做的只能反复迭代,尝试各种解决方案。
数据是机器学习工程师工作的先决条件,因此在打造数据分析团队早期,聘请数据分析师是很有必要的。
机器学习工程师在分析过程中还需要进行评估,比如解决方案是否真的适用于新的数据。同时出色的机器学习工程师要明确采用不同方法分别需要多少时间。
7. 数据科学家
数据科学家在前三个角色都能达到专家级别,具有比较全面的能力。因此在数据科学团队中数据科学家的薪资比较高。对于企业而言,如果在预算内,雇佣数据科学家是不错的选择。但如果预算不够,那么可以培养现有团队中担任单一角色的人员。
8. 数据分析经理/数据科学负责人
数据分析经理兼备了数据科学家和决策者的作用,在团队中担任领导型作用,能够保持团队不会迷失方向。
数据分析经理对团队有很大的促进作用,但是这方面的人才很少。他们经常思考的问题有“如何设计正确的问题;如何做出决定;如何最好地分配人员;什么值得做;技能和数据是否符合要求;如何确保良好的输入数据”等。如果你有幸雇用到了数据分析经理,请留住他。
9. 定性专家/社会科学家
团队中的决策者会是杰出领导者、影响者或导航者......但在决策的艺术性和科学性方面并不够。这时可以让定性专家促进决策者的工作,并补充他们的技能。
定性专家通常具有社会科学和数据背景,能够帮助决策者理清想法,多角度进行分析,并将模棱两可的直觉转化为经过深思熟虑的指令,以便团队的其他成员轻松执行。比起数据科学家,他们通常更有能力将决策者意图转化为具体的指标。
10. 研究人员
许多招聘者认为,在打造数据科学团队一开始就应该聘用研究人员,但并非如此。在团队没有成型时,即使雇佣研究人员也可能并没有合适的环境来发挥其价值。最好等到团队发展到一定程度,有合适的设备资源时再加入研究人员打造新的工具。
其他角色
除了以上提到的角色,数据科学团队中还可以加入以下角色:
· 领域专家
· 伦理学家
· 软件工程师
· 可靠性测试工程师
· UX设计师
· 交互式可视化/图形设计师
· 数据收集专家
· 数据产品经理
· 项目经理
除了前面提到的十大角色,许多数据科学项目还需要以上人员的参与。他们都有自己主攻的专业领域,在团队中是很好的补充。
大团队还是小团队?
看到这里你可能会感到压力,但在具体构建数据科学团队时,可以根据企业的自身情况而定。
这里可以把应用机器学习类比为开餐厅,如果你想开一家制作创新披萨的大型披萨店,那么就需要大型团队。你要决定做什么菜(角色2),使用哪些食材(角色3和4),在哪里获得食材(角色1),如何定制菜单(角色6),以及如何对菜品进行测试(角色5)。但如果你的目标只是制作普通的披萨,则不需要这么复杂,采用已测试过的菜单,加上食材就可以开始了。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16