细数数据科学团队中的十大关键角色
应用数据科学是一项高度跨学科的团队工作,需要用多样性的角度看问题。事实上,比起专业知识和经验,观点和态度的重要性也不容小觑。以下是我对数据科学团队构成的看法。
1. 数据工程师
首先在进行数据分析之前,我们需要获取数据。如果是处理小型数据集,数据工程则有点类似在电子表格中输入数字;如果是处理更复杂的数据时,那么数据工程本身就构成了一门复杂的学科。首先你的团队中需要数据工程师获取数据,从而其他人员能够在此基础上进行分析和处理。
2. 决策者
在聘请数据科学家之前,请确保团队中有充分了解数据驱动决策的角色。决策者需要分辨哪些决策需要数据支持,并根据对业务的潜在影响确定分析程度。同时决策者需要深思熟虑,在做决定前进行全方位的思考,考虑到问题的方方面面。
3. 数据分析师
每个人都能查看数据,并从中得出见解,唯一可能缺少的是相关软件的使用技能。
学习使用R和Python等工具是对数据可视化的升级,这些工具功能更丰富,从而能够查看更多种类数据集。
1934年,"尼斯湖水怪"图
要记住,你不应该得出数据之外的结论,这需要专业培训。就像根据上面的图片,你只能说“这就是我的数据集中的内容”,而不能轻率的得出结论,尼斯湖水怪是真实存在的。
4. 专家分析师
专家分析师需要更快地查看分析数据。这里注重的是分析数据、探索和发现等技能,而不是严谨地得出结论。专家分析师能够帮助团队注意更多的数据,从而决策者能够更清晰地做出判断。
但最好不要让能编写强大代码的工程师担任这个角色,因为在这方面速度就是一切,需要尽快得出更多分析结论。因此对代码要求过高的人很难胜任这个角色。
5. 统计学家
到这个阶段,团队中已经有人对数据进行大胆探索了,下面需要有人能在探索中加入理性分析,避免团队得出无根据的结论。
例如,如果你的机器学习系统能应用于某个数据集,那么你能得出结论,在该数据集中这个系统是奏效的。那么能顺利用于生产中吗?能够进行发行吗?这时就需要其他技能来处理这些问题,即统计技能。
如果我们想在可观事实不够的情况下做出决定,那么就需要放慢速度并采取谨慎的态度,这部分就需要统计学家。
6. 机器学习工程师
应用人工智能/机器学习工程师的价值不是在于理解算法的运行原理,而是能运用这些算法而不是构建它们(那是研究人员要做的)。他们需要整理代码,从而让其运行在现有的算法和数据集中。
除此之外,机器学习工程师要能够应对失败。大多数时候你不知道自己在做什么,你通过大量的算法运行数据,在得到预期结果前会经历多次的失败,因此需要能积极地应对失败。
完美主义者很难成为机器学习工程师,因为要处理的业务问题不像课堂中那样,你无法事先把握情况,而无法马上得出预期的结果。你所做的只能反复迭代,尝试各种解决方案。
数据是机器学习工程师工作的先决条件,因此在打造数据分析团队早期,聘请数据分析师是很有必要的。
机器学习工程师在分析过程中还需要进行评估,比如解决方案是否真的适用于新的数据。同时出色的机器学习工程师要明确采用不同方法分别需要多少时间。
7. 数据科学家
数据科学家在前三个角色都能达到专家级别,具有比较全面的能力。因此在数据科学团队中数据科学家的薪资比较高。对于企业而言,如果在预算内,雇佣数据科学家是不错的选择。但如果预算不够,那么可以培养现有团队中担任单一角色的人员。
8. 数据分析经理/数据科学负责人
数据分析经理兼备了数据科学家和决策者的作用,在团队中担任领导型作用,能够保持团队不会迷失方向。
数据分析经理对团队有很大的促进作用,但是这方面的人才很少。他们经常思考的问题有“如何设计正确的问题;如何做出决定;如何最好地分配人员;什么值得做;技能和数据是否符合要求;如何确保良好的输入数据”等。如果你有幸雇用到了数据分析经理,请留住他。
9. 定性专家/社会科学家
团队中的决策者会是杰出领导者、影响者或导航者......但在决策的艺术性和科学性方面并不够。这时可以让定性专家促进决策者的工作,并补充他们的技能。
定性专家通常具有社会科学和数据背景,能够帮助决策者理清想法,多角度进行分析,并将模棱两可的直觉转化为经过深思熟虑的指令,以便团队的其他成员轻松执行。比起数据科学家,他们通常更有能力将决策者意图转化为具体的指标。
10. 研究人员
许多招聘者认为,在打造数据科学团队一开始就应该聘用研究人员,但并非如此。在团队没有成型时,即使雇佣研究人员也可能并没有合适的环境来发挥其价值。最好等到团队发展到一定程度,有合适的设备资源时再加入研究人员打造新的工具。
其他角色
除了以上提到的角色,数据科学团队中还可以加入以下角色:
· 领域专家
· 伦理学家
· 软件工程师
· 可靠性测试工程师
· UX设计师
· 交互式可视化/图形设计师
· 数据收集专家
· 数据产品经理
· 项目经理
除了前面提到的十大角色,许多数据科学项目还需要以上人员的参与。他们都有自己主攻的专业领域,在团队中是很好的补充。
大团队还是小团队?
看到这里你可能会感到压力,但在具体构建数据科学团队时,可以根据企业的自身情况而定。
这里可以把应用机器学习类比为开餐厅,如果你想开一家制作创新披萨的大型披萨店,那么就需要大型团队。你要决定做什么菜(角色2),使用哪些食材(角色3和4),在哪里获得食材(角色1),如何定制菜单(角色6),以及如何对菜品进行测试(角色5)。但如果你的目标只是制作普通的披萨,则不需要这么复杂,采用已测试过的菜单,加上食材就可以开始了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31